Project description:In previous studies with peripheral blood cells, platelet factors were found to be associated with severe allergic phenotypes. A reliable method yielding highly concentrated and pure platelet samples is usually not available for immunological studies. Plateletpheresis is widely used in the clinics for donation purposes. In this study, we designed a protocol based on plateletpheresis to obtain platelet-rich plasma (PRP), Platelet Poor Plasma (PPP) as well as CD3+ and CD14+ cells matched samples from a waste plateletpheresis product for immunological studies.
Project description:The objective of the study was to investigate long non-coding RNA (lncRNA) expression profiles of blood mononuclear cells (PBMC), to identify lncRNAs that act at the interphase of microbiome-mediated immune homeostasis in allergy/asthma.
Project description:Comparison of gene expression profiles between pediatric patients with and without symptoms of cross-allergy (birch-apple syndrome).
Project description:CD4+ helper T cells (TH) and regulatory T cells (Treg) that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and non-asthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous, and certain subsets are quantitatively and qualitatively different in subjects with HDM-reactive asthma. The number of interleukin (IL)-9 expressing HDM-reactive TH cells is greater in asthmatics compared with non-asthmatics with HDM allergy, and display enhanced pathogenic properties. More HDM-reactive Th and Treg cells expressing the interferon-response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, TRAIL, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Project description:CD4+ helper T cells (TH) and regulatory T cells (Treg) that respond to common allergens play an important role in driving and dampening airway inflammation in patients with asthma. Until recently, direct, unbiased molecular analysis of allergen-reactive TH and Treg cells has not been possible. To better understand the diversity of these T cell subsets in allergy and asthma, we analyzed the single-cell transcriptome of ~50,000 house dust mite (HDM) allergen-reactive TH cells and Treg cells from asthmatics with HDM allergy and from three control groups: asthmatics without HDM allergy and non-asthmatics with and without HDM allergy. Our analyses show that HDM allergen-reactive TH and Treg cells are highly heterogeneous, and certain subsets are quantitatively and qualitatively different in subjects with HDM-reactive asthma. The number of interleukin (IL)-9 expressing HDM-reactive TH cells is greater in asthmatics compared with non-asthmatics with HDM allergy, and display enhanced pathogenic properties. More HDM-reactive Th and Treg cells expressing the interferon-response signature (THIFNR and TregIFNR) are present in asthmatics without HDM allergy compared with those with HDM allergy. In cells from these subsets (THIFNR and TregIFNR), expression of TNFSF10 was enriched; its product, TRAIL, dampens activation of TH cells. These findings suggest that the THIFNR and TregIFNR subsets may dampen allergic responses, which may help explain why only some people develop TH2 responses to nearly ubiquitous allergens.
Project description:Cutaneous exposure to food antigen through impaired skin barrier has been shown to induce epicutaneous sensitization, and thereby cause IgE-mediated food allergy. We examined whether skin barrier impairment deteriorated food allergy symptoms in epicutaneously sensitized mice. To clarify the association between skin inflammation and food allergy symptoms, we analyzed gene expression at skin lesions using a GeneChip.
Project description:Analysis of gene-expression profiles by microarrays can be very useful to characterize new potential candidate genes, key regulatory networks, and to define phenotypes or molecular signatures to improve the diagnosis or classification of the disease. We have used this approach in the study of one of the major causes of allergic diseases in Mediterranean countries, the olive pollen response, in order to find differential molecular markers among five clinical groups, Non-allergic, Asymptomatic, Allergic but not to olive pollen, Non-treated, olive pollen allergic patients and Olive pollen allergic patients (under specific-immunotherapy). The results of gene-expression by principal components analysis (PCA) clearly showed five clusters of samples that correlated with the five clinical groups. Analysis of differential gene-expression by multiple testing, and functional analysis by KEGG and Gene-Ontology revealed differential genes and pathways among the 5 clinical groups. The study population comprised 28 subjects, selected from a previous immunological study (Aguerri et al. Eur. J. Inflammation 2012, in press), from Andalusia, who were recruited in 2 olive pollen exposure situations: during (April-June) and outside the pollen season (October-December). We established 5 groups, and 6 subjects from each group were selected for gene-expression analysis: Group 1, non-allergic subjects; Group 2, asymptomatic subjects (diagnosed with olive pollen allergy by skin testing, with no seasonal respiratory symptoms [rhinitis and/or asthma], and who consulted for adverse reaction to drugs); Group 3, patients who were allergic, but not to olive pollen; Group 4, non-treated olive pollenM-bM-^@M-^Sallergic; and Group 5, olive pollenM-bM-^@M-^Sallergic patients (receiving olive pollenM-bM-^@M-^Sspecific immunotherapy).The subjects were unrelated and recruited at the Allergy Service of 4 hospitals in Andalusia (Granada, JaM-CM-)n, Sevilla, and MM-CM-!laga). Olive pollenM-bM-^@M-^Sallergic patients fulfilled the following criteria: seasonal rhinitis and/or asthma from April to June, a positive skin prick test result for O. europaea pollen extract (ALK AbellM-CM-3, Madrid, Spain), and no previous immunotherapy. Informed consent was obtained from each subject. Ethical approval for the study was obtained from the Ethical and Research Committee of the participating hospitals. PBMCs were isolated from heparin-containing peripheral blood samples taken during and outside pollen season, by gradient centrifugation on Lymphoprep (Comercial Rafer, Zaragoza, Spain) following the manufacturerM-bM-^@M-^Ys instructions.
Project description:Peanut allergy is increasingly prevalent among children in the United States and other industrialized countries and is now estimated to affect approximately 2% of children. While there are currently no approved treatment options, peanut allergy usually persists into adulthood, can be life-threatening, and accounts for most deaths related to food allergy. Here, we track peanut-reactive CD4+ T effector (pTeff) cells using the CD154 up-regulation assay. We found that CRTH2+ pTeff cells and CCR6+ pTeff cells represent two mutually exclusive, non-overlapping cellular and molecular entities involved in food allergic diseases.
Project description:Interventions: desensitization
Primary outcome(s): the rate of oxaliplatin readministration without allergy
Study Design: Single arm Non-randomized