Project description:The present work comprises the study of wound pathogenic bacteria as part of a community. It considers the interactions of two different S. aureus isolates with B. thuringiensis and K. oxytoca; all of them isolated from the same chronic wound of a patient with epidermolysis bullosa. Particular focus has been given on the interactions of S. aureus with other microbes due to its high prevalence among chronic wounds. During cultivation, no species performed as dominant or inhibited the growth of one another. Mass spectrometry was used to explore the inherent relationships between the staphylococcal strains and the coexisting bacteria exproteomes. The analysis showed an important reduction in the amount of staphylococcal cytoplasmic proteins when co-cultured with K. oxytoca and B. thuringiensis, this decrement did not occur with klebsiella and bacillus proteins. Interestingly, K. oxytoca and B. thuringiensis seemed to have a more evident response towards the presence of S. aureus in the culture, while the opposite was not observed with the staphylococcal isolates. Genomic analysis revealed isolate t13595 hypermutable characteristics, placing the interactions between staphylococcal isolates in the context of a chronic wound. Overall, the nature of the exoproteome variations among cultures suggests that adaptive mechanisms differ in all strains.
Project description:The increasing antibiotic resistance of Klebsiella pneumoniae poses a serious threat to global public health. To investigate the antibiotic resistance mechanism of Klebsiella pneumonia, we performed gene expression profiling analysis using RNA-seq data for clinical isolates of Klebsiella pneumonia, KPN16 and ATCC13883. Our results showed that mutant strain KPN16 is likely to act against the antibiotics through increased increased butanoate metabolism and lipopolysaccharide biosynthesis, and decreased transmembrane transport activity.
Project description:The rise of multi-drug resistance in bacterial pathogens imposes the need to study these organisms from new angles. A little explored outset is to scrutinize bacterial niche adaptations and interactions among pathogenic and commensal bacteria, because they can provide a better understanding of the fitness of pathogens in their human host. We have previously shown that co-culturing of the pathogen Staphylococcus aureus with co-resident Klebsiella oxytoca or Bacillus thuringiensis wound isolates resulted in reduced levels of virulence factor secretion, suggesting that the presence of these co-resident bacteria would modulate S. aureus virulence. In the present study, we performed an in-depth investigation of changes in S. aureus gene expression upon co-cultivation with K. oxytoca and B. thuringiensis under infection-mimicking conditions. To this end, we profiled the cellular proteomes of the co-existing bacteria with special focus on S. aureus. In parallel, we employed RNA sequencing to highlight global changes in staphylococcal behaviour. The results imply that co-colonizing bacteria from chronic wounds can pacify S. aureus, and this conclusion was verified in a Galleria mellonella infection model. Altogether, our findings show that the presence of K. oxytoca and B. thuringiensis leads to massive rearrangements in S. aureus physiology and substantial reduction in virulence.
Project description:In this study, we introduce BacDrop, a bacterial droplet-based high throughput scRNA-seq technology that can be applied to large cell numbers. We applied BacDrop to study Klebsiella pneumoniae clinical isolates and elucidated their critical, genome-wide heterogeneity in the absence and presence of antibiotic perturbations.
Project description:These datasets describe the eliciting conditions for the leup operon in K. oxytoca and the metabolites of the pyr gene in K. oxytoca
File descriptions: 16495_KO1-3: ESI+ runs of the pyr KO K. oxytoca strain in M9+CAS+Gal KOx_WT1-3: ESI+ runs of K. oxytoca WT in M9+CAS+Gal
These files should be compared to each other.
KOxy_M9CASGAL_MSMS_Pyrazine files are targeted MS2 Qtof runs of compounds from Klebsiella oxytoca that have the pyrazine-like UV-Vis spectrum.
KoxNeu5Ac_1-3_AutoMSMS: ESI+ MS2 runs of WT K. oxytoca in M9+CAS+Neu5AC
KoxWT_1-3_AutoMSMS: ESI+ MS2 runs of WT K. oxytoca in M9+CAS
These files should be compared to each other.