Project description:The microRNA biogenesis enzyme Drosha was found to be important for DNA repair and this function appears to be distinct to its role in miRNA-mediated repression. Novel small RNAs were reported previously to be produced from the sequences around a DNA break. Utilising an endonuclease system (AsiSI) we were unable to detect such small RNA around 100 cuts within the endogenous genome. Sequencing of R-loops (DNA:RNA hybrids) was performed and an increase in R-loop formation was observed around many DNA break sites. Loss of Drosha appears to perturb this damage dependent formation of R-loops. RNase H1 over-expression appears to reduce repair at these break sites. Drosha appears to be important for facilitating R-loop formation at DNA break sites to aid in the repair process.
Project description:During cell division, transcription factors (TFs) are removed from chromatin twice, during DNA synthesis, and during condensation of chromosomes. How TFs can efficiently find their sites following these stages has been unclear. Here, we have analyzed the binding pattern of expressed TFs in human colorectal cancer cells. We find that binding of TFs is highly clustered, and that the clusters are enriched in binding motifs for several major TF classes. Strikingly, almost all clusters are formed around cohesin, and loss of cohesin decreases both DNA accessibility and binding of TFs to clusters. We show that cohesin remains bound in S phase, holding the nascent sister chromatids together at the TF cluster sites. Furthermore, cohesin remains bound to the cluster sites when TFs are evicted in early M-phase. These results suggest that cohesin binding functions as a cellular memory that promotes re- stablishment of TF clusters after DNA replication and chromatin condensation. Examination of TF binding by ChIP-seq in LoVo CRC cell-lines.