Project description:BACKGROUND: Lactobacilli can utilize a variety of carbohydrates which reflects the nutrient availability in their respective environments. A common lactobacilli in the human gastrointestinal tract, Lactobacillus gasseri, was selected for further study. The currently available annotation of the L. gasseri ATCC 33323 genome describes numerous putative genes involved in carbohydrate utilization, yet the specific functions of many of these genes remain unknown. RESULTS: An enzyme I (EI) knockout strain revealed that a functional phosphotransferase transporter system (PTS) is required to ferment at least 15 carbohydrates. Analysis of the L. gasseri ATCC 33323 genome identified fifteen complete (containing all of the necessary subunits) PTS transporters. Transcript expression profiles in response to various carbohydrates (glucose, mannose, fructose, sucrose and cellobiose) were analyzed for the fifteen complete PTS transporters in L. gasseri. PTS 20 was induced 27 fold in the presence of sucrose and PTS 15 was induced 139 fold in the presence of cellobiose. No PTS transporter was induced by glucose, fructose or mannose. Insertional inactivation of PTS 15 and PTS 20 significantly impaired growth on cellobiose and sucrose, respectively. As predicted by bioinformatics, insertional inactivation of PTS 21 confirmed its role in mannose utilization. CONCLUSIONS: The experiments revealed the extensive contribution of PTS transporters to carbohydrate utilization by L. gasseri ATCC 33323 and the general inadequacy of the annotated sugar specificity of lactobacilli PTS transporters.
Project description:Background: Lactobacillus plantarum is found in a variety of fermented foods and as such, consumed for centuries. Some strains are natural inhabitants of the human gastro-intestinal tract and like other Lactobacillus species, L. plantarum has been extensively studied for its immunomodulatory properties and its putative health-promoting effects (probiotic). Being the first line of host defense intestinal epithelial cells (IEC) are key players in the recognition and initiation of responses to gut microorganisms. Results: Using high-density oligonucleotide microarrays we examined the gene expression profiles of differentiated Caco-2 cells exposed to various doses of L. plantarum. In addition, the effects were correlated to monolayer permeability studies and measurement of lactic acid production. A transcriptional dose-dependent IEC response to L. plantarum was found. Incubation of Caco-2 with a low bacterial dose induced a specific response, not due to cytotoxicity or production of lactic acid, including modulation of cell cycle and cell signaling functions. Exposure of Caco-2 cells to larger amounts of bacteria, accompanied by the production of lactic acid and glucose depletion, provoked increased permeability and supposed non-specific defense responses. Conclusions: These results suggest that IEC are able to sense and react to the presence of gut bacteria. This study provides the first description of global transcriptional response of human IEC to a commensal lactic acid bacterium, and it shows the importance of choosing physiological bacterial doses to prevent the observation of non-specific host reactions. Caco-2 cells were exposed for 10h to Lactobacillus. Fourteen samples are analyzed: 4 control Caco-2, 4 Caco-2 exposed to a low dose (10) of Lactobacillus, 4 Caco-2 exposed to a medium dose (100) of Lactobacillus, 2 Caco-2 exposed to a high dose (1000) of Lactobacillus. All 14 RNA samples are labeled with Cy5 and hybridized to a common reference (undifferentiated Caco-2, untreated) RNA labeled with Cy3
Project description:We determined the chemical structure of lipoteichoic acid (LTA) from Lactobacillus gasseri JCM 1131(T). The repeating unit was comprised of glycerolphosphate and 2-alanylglycerolphosphate. The glycolipid anchor was tetrahexosylglycerol with two or three acyl groups. To our knowledge, this is the first demonstration of a tetrahexose structure in an LTA glycolipid anchor.