Project description:Using mouse lung resident conventional CD11b+ dendritic cells (CD11b+ cDCs) in the context of house-dust mite (HDM)-driven allergic airway sensitization as a model, we aimed here to identify transcriptional events regulating the pro-Th2 activity of cDCs. We used microarray analyses to identify genes differentially expressed by lung CD11b+ conventional dendritic cells in response to house dust mite allergens in wild-type and Irf3-deficient mice
Project description:The existence of conventional dendritic cells (cDCs) has not yet been demonstrated outside mammals. In this paper, we identified bona fide cDCs in chicken spleen. Comparative profiling of global and of immune response gene expression, morphology, and T cell activation properties show that cDCs and macrophages (MPs) exist as distinct mononuclear phagocytes in chicken, resembling their human and mouse cell counterparts. Using computational analysis, core gene expression signatures for cDCs, MPs, T and B cells across chicken, human and mouse were established, which will facilitate the identification of these subsets in other vertebrates. Overall this study, by extending the newly uncovered cDC and MP paradigm to chicken, suggests that the generation of these two phagocyte lineages occurred before the reptile to mammal and bird transition in evolution. It opens avenues for the design of new vaccines and neutraceuticals that are mandatory for the sustained supply of poultry products in the expanding human population. Four independent replicates of RNA from 4 cellular populations have been purified from histocompatible chicken spleens, based on surface markers and fluorecence cell sorting: putative conventional Dendritic cells (F2+, MHC-II+ cells) ; control B cells (BU-1+ cells; only 3 replicates could be included in the study); T cells (CD3+ cells) and macrophage spleen population (MHC-II+, KUL-01+ cells).
Project description:The canonical pathway for IL-1? production requires TLR-mediated NF-?B-dependent Il1b gene induction, followed by caspase-containing inflammasome-mediated processing of pro-IL-1?. Here we show that IL-21 unexpectedly induces IL-1? production in conventional dendritic cells (cDCs) via a STAT3-dependent but NF-?B-independent pathway. IL-21 does not induce Il1b expression in CD4+ T cells, with differential histone marks present in these cells versus cDCs. IL-21-induced IL-1? processing in cDCs does not require caspase-1 or caspase-8 but depends on IL-21-mediated death and activation of serine protease(s). Moreover, STAT3-dependent IL-1? expression in cDCs at least partially explains the IL-21-mediated pathologic response occurring during infection with Pneumonia Virus of Mice. These results demonstrate lineage-restricted IL-21-induced IL-1? via a non-canonical pathway and provide evidence for its importance in vivo. Genome-wide transcription factors mapping and binding of STAT3, H3K4me3, H3K27me, H3K4me1, H3K27ac in mouse CD4+ T cells and dendritic cells in WT and Stat3-/- mice. RNA-Seq is performed in mouse CD4+ T cells and dendritic cells in WT mice, with or without indicated cytokines.
Project description:Here, we use a microfluidics-based approach to prepare single-cell RNA-Seq libraries from 164 primary human conventional dendritic cells (cDCs) as well as cord blood (452) and blood (341) pre-cDCs. We examined heterogeneity between individual cells to document potential subpopulations within human cDCs and pre-cDCs.
Project description:The existence of conventional dendritic cells (cDCs) has not yet been demonstrated outside mammals. In this paper, we identified bona fide cDCs in chicken spleen. Comparative profiling of global and of immune response gene expression, morphology, and T cell activation properties show that cDCs and macrophages (MPs) exist as distinct mononuclear phagocytes in chicken, resembling their human and mouse cell counterparts. Using computational analysis, core gene expression signatures for cDCs, MPs, T and B cells across chicken, human and mouse were established, which will facilitate the identification of these subsets in other vertebrates. Overall this study, by extending the newly uncovered cDC and MP paradigm to chicken, suggests that the generation of these two phagocyte lineages occurred before the reptile to mammal and bird transition in evolution. It opens avenues for the design of new vaccines and neutraceuticals that are mandatory for the sustained supply of poultry products in the expanding human population.
Project description:Dendritic cells (DCs) are can be broadly divided into conventional (cDC) and plasmacytoid (pDC) subsets. Despite the importance of this lineage diversity, its genetic basis is not fully understood. ChIP-seq profiling of PU.1 binding sites in cDCs and pDCs revealed a key role for PU.1 in maintaining cDC identity.
Project description:We hereby report application of single cell RNA sequencing in order to understand heterogeneity within macrophages and conventional dendritic cells found in murine lungs. In this paper we specifically show different populations of cDCs as revealed through single cell RNA sequencing