Project description:We identified slow-cycling cells (SCCs) in Ewing sarcoma using a label retention assay with CFSE. We labeled cells of SK-ES-1, an Ewing sarcoma cell line, with CFSE. After 5 days culture, we isolated cells retaining strong fluorescence (upper, ~10%) as SCCs and other cells (lower, ~90%) as non-slow-cycling cells (non-SCCs) using FACS AriaTM Ⅲ cell sorter.
Project description:Identification of genes and pathways that were influenced by knock-down PRKDC in TC32 Ewing sarcoma and HCT116 colorectal carcinoma cell lines.
Project description:This SuperSeries is composed of the following subset Series: GSE36857: Goldengate Methylation analysis: Ewing Sarcoma GSE36858: 5- AZA treatment of EWS cell lines Refer to individual Series
Project description:Ewing sarcoma is an aggressive pediatric small round cell tumor that predominantly occurs in bone. Approximately 85% of Ewing sarcomas harbor the EWS/FLI fusion protein, which arises from a chromosomal translocation, t(11:22)(q24:q12). EWS/FLI interacts with numerous lineage-essential transcription factors to maintain mesenchymal progenitors in an undifferentiated state. We previously showed that EWS/FLI binds the osteogenic transcription factor RUNX2 and prevents osteoblast differentiation. In this study, we investigated the role of another Runt-domain protein, RUNX3, in Ewing sarcoma. RUNX3 participates in mesenchymal-derived bone formation and is a context dependent tumor suppressor and oncogene. RUNX3 was detected in all Ewing sarcoma cells examined, whereas RUNX2 was detected in only 73% of specimens. Like RUNX2, RUNX3 binds to EWS/FLI via its Runt domain. EWS/FLI prevented RUNX3 from activating the transcription of a RUNX-responsive reporter, p6OSE2. Stable suppression of RUNX3 expression in the Ewing sarcoma cell line A673 delayed colony growth in anchorage independent soft agar assays and reversed expression of EWS/FLI-responsive genes. These results demonstrate an important role for RUNX3 in Ewing sarcoma. RNA-seq to compare transcriptiome of control A673 ewing sarcoma cells stably expression a non-target or RUNX3 shRNA
Project description:Ewing sarcoma (EwS) is an adolescent and young adult sarcoma characterized by chromosome translocations between members of the FET family of RNA binding proteins and members of the ETS family of transcription factors, the most frequent fusion being EWS-FLI1. EWS-FLI1 acts as a pioneer factor, creating de novo enhancers and activating genes located in the vicinity of EWS-FLI1-bound microsatellite sequences. recent results from our lab indicate that EWS-FLI1, which activates transcription through binding to the DNA at specific sites, can generate fully novel, unconventional transcription units in regions of the genome that are fully quiescent in normal cells (manuscript in preparation). The hypothesis of the project is that the open reading frames (ORFs) of these transcripts may encode peptides presented at the cell surface by HLA class I molecules and hence be recognized as non-self by the immune system. The aim of this study is to detect Ewing-specific neo-peptides/proteins using proteomics approach.
Project description:Identification of druggable targets is a prerequisite for developing targeted therapies against Ewing sarcoma. We report the identification of Protein Kinase C Beta (PRKCB) as a protein specifically and highly expressed in Ewing sarcoma as compared to other pediatric cancers. Its transcriptional activation is directly regulated by the EWSR1-FLI1 oncogene. Getting insights in PRKCB activity we show that, together with PRKCA, it is responsible for the phosphorylation of histone H3T6, allowing global maintenance of H3K4 trimethylation on a variety of gene promoters. In the long term, PRKCB RNA interference induces apoptosis in vitro. More importantly, in xenograft mice models, complete impairment of tumor engraftment and even tumor regression were observed upon PRKCB inhibition, highlighting PRKCB as a most valuable therapeutic target. Deciphering PRKCB roles in Ewing sarcoma using expression profiling, we found a strong overlap with genes modulated by EWSR1-FLI1 and an involvement of RPKCB in regulating crucial signaling pathways. Altogether, we show that PRKCB may have two important independent functions and should be considered as highly valuable for understanding Ewing sarcoma biology and as a promising target for new therapeutic approaches in Ewing sarcoma. A673 Ewing cell line was treated for 72 hours by either control siRNA or siRNA directed against PRKCB or EWSR1-FLI1. Total RNAs were extracted and hybridized on HuGene1.1STv1 Affymetrix Arrays. Normalisation was performed using specific Brainarray Enrtez gene CDF file (v14.1).