Project description:Chromatin accessibility mapping is a powerful approach to identify potential regulatory elements. In the popular ATAC-seq method, Tn5 transposase inserts sequencing adapters into accessible DNA (‘tagmentation’). CUT&Tag is a tagmentation-based epigenomic profiling method in which antibody tethering of Tn5 to a chromatin epitope of interest profiles specific chromatin features in small samples and single cells. Here we show that by simply modifying the tagmentation conditions for histone H3K4me2/3 CUT&Tag, antibody-tethered tagmentation of accessible DNA sites is redirected to produce accessible DNA maps that are indistinguishable from the best ATAC-seq maps. Thus, DNA accessibility maps can be produced in parallel with CUT&Tag maps of other epitopes with all steps from nuclei to amplified sequencing-ready libraries performed in single PCR tubes in the laboratory or on a home workbench. As H3K4 methylation is produced by transcription at promoters and enhancers, our method identifies transcription-coupled accessible regulatory sites.
Project description:Cell-to-cell variation is a universal feature of life that impacts a wide range of biological phenomena, from developmental plasticity to tumor heterogeneity. While recent advances have improved our ability to document cellular phenotypic variation the fundamental mechanisms that generate variability from identical DNA sequences remain elusive. Here we reveal the landscape and principles of cellular DNA regulatory variation by developing a robust method for mapping the accessible genome of individual cells via assay of transposase accessible chromatin sequencing (ATAC-seq). Single-cell ATAC-seq (scATAC-seq) maps from hundreds of single-cells in aggregate closely resemble accessibility profiles from tens of millions of cells and provides insights into cell-to-cell variation. Accessibility variance is systematically associated with specific trans-factors and cis-elements, and we discover combinations of trans-factors associated with either induction or suppression of cell-to-cell variability. We further identify sets of trans-factors associated with cell-type specific accessibility variance across 6 cell types. Targeted perturbations of cell cycle or transcription factor signaling evoke stimulus-specific changes in this observed variability. The pattern of accessibility variation in cis across the genome recapitulates chromosome topological domains de novo, linking single-cell accessibility variation to three-dimensional genome organization. All together, single-cell analysis of DNA accessibility provides new insight into cellular variation of the “regulome.” Profiles of single cell epigenomes, assayed using scATAC-seq, across 8 cell types and 4 targeted cell manipulations. The complete data set contains a total of 1,632 assayed wells.
Project description:Active regulatory elements in eukaryotes are typically characterized by an open, nucleosome-depleted chromatin structure; mapping areas of open chromatin has accordingly emerged as a widely used tool in the arsenal of modern functional genomics. However, existing approaches for profiling chromatin accessibility are limited by their reliance on DNA fragmentation and short read sequencing, which leaves them unable to provide information about the state of chromatin on larger scales or reveal coordination between the chromatin state of individual distal regulatory elements. To address these limitations, we have developed a method for profiling accessibility of individual chromatin fibers at multi-kilobase length scale (SMAC-seq, or Single-Molecule long-read Acessible Chromatin mapping sequencing assay), enabling the simultaneous, high-resolution, single-molecule assessment of the chromatin state of distal genomic elements. Our strategy is based on combining the preferential methylation of open chromatin regions by DNA methyltransferases (CpG and GpC 5-methylcytosine (5mC) and N6-methyladenosine (m6A) enzymes) and the ability of long-read single-molecule nanopore sequencing to directly read out the methylation state of individual DNA bases. Applying SMAC-seq to the budding yeast Saccharomyces cerevisiae, we demonstrate that aggregate SMAC-seq signals match bulk-level accessibility measurements, observe single-molecule protection footprints of nucleosomes and transcription factors, and quantify the correlation between the chromatin states of distal genomic elements
Project description:Here we introduce a novel technique that specifically identifies Tissue Accessible Chromatin (TACh). The TACh method uses pulverized frozen tissue as starting material and employs one of the two robust endonucleases, Benzonase or Cyansase, which are fully active under a range of stringent conditions such as high levels of detergent and DTT. As a proof of principle we applied TACh to frozen mouse liver tissue. Combined with massive parallel sequencing TACh identifies accessible regions that are associated with euchromatic features and accessibility at transcriptional start sites correlates positively with levels of gene transcription. Idetification of accessible chromatin in forzen adult mouse liver tissue
Project description:Faithful DNA replication is essential for normal cell division and differentiation. In eukaryotic cells, DNA replication takes place on chromatin. This poses the critical question as to how DNA replication can progress through chromatin, which is inhibitory to all DNA-dependent processes. Here, we have developed a novel genome-wide method to measure chromatin accessibility to micrococcal nuclease that is normalized for nucleosome density, NCAM (Normalized Chromatin Accessibility to MNase) assay. This method enabled us to discover that chromatin accessibility increases specifically at and ahead of DNA replication forks in normal S phase and during replication stress. We further found that Mec1, a key regulatory ATR-like kinase in the S-phase checkpoint, is required for both normal chromatin accessibility around replication forks and replication fork rate during replication stress. In this study we sought to analyze the chromatin structural changes that take place at sites of DNA replication. To this end, we obtained yeast cell populations synchronously undergoing DNA replication by M-NM-1-factor G1 arrest and release. In order to analyze chromatin structure at sites of DNA replication we first mapped the genomic locations undergoing DNA replication to high-resolution, strand-specific microarrays tiling chromosomes III, VI, and XII, covering ~14% of the genome. Two complementary approaches were taken: (1) we mapped fork positions by chromatin immunoprecipitation (ChIP) of a FLAG-tagged DNA polymerase 1 (Pol1), a replication fork component and (2) we mapped the sites of active DNA synthesis by generating DNA copy number profiles. We then analyzed chromatin structure at the sites of DNA replication by Micrococcal nuclease mononucleosome mapping and by generating histone H3 density maps. We further generated a Normalized Chromatin Accessibility to MNase (NCAM) signal by normalizing MNase mononucleosome signal for histone H3 density. NCAM signal represents a measure of nucleosome accessibility to MNase that is normalized for nucleosome content. These three approaches allowed us to assess potential changes in nucleosome positioning, nucleosome density, and nucleosome accessibility during DNA replication. We searched for changes in chromatin structure by comparing, during S phase, regions undergoing DNA replication to those not yet replicated, and also by comparing the same region before replication (not replicated, G1 arrested control) and during DNA replication in S phase. We typically harvested S phase cells at 30 or 60 minutes after release from G1 arrest. Experimental conditions included releasing cells into rich media at 24M-BM-0C or into rich media containing 200 mM Hydroxyurea (HU). Both conditions slowed down replication fork rate and made these experiments feasible. For each strain, samples for the different experiments (Chromatin for Pol1 and H3 ChIP, in vivo MNase digestion, and DNA for DNA copy number profiles) were harvested simultaneously for each time point. Therefore, comparisons between time points for each strain must be made using samples from the same replicate experiment. Our analysis included WT cells, as well as S phase checkpoint mutants (M-NM-^Tmec1 M-NM-^Tsml1 and mec1-100 M-NM-^Tsml1), as well as control strains (M-NM-^Tsml1).