Project description:Spiders are renowned for their efficient capture of flying insects using intricate aerial webs. How the spider nervous systems evolved to cope with this specialized hunting strategy and various environmental clues in an aerial space remains unknown. Here, we report a brain cell atlas of >30,000 single-cell transcriptomes from a web-building spider (Hylyphantes graminicola). Our analysis revealed the preservation of ancestral neuron types in spiders, including the potential coexistence of noradrenergic and octopaminergic neurons, and many peptidergic neuronal types that are lost in insects. By comparing the genome of two newly sequenced plesiomorphic burrowing spiders with three aerial web-building spiders, we found that the positively selected genes in the ancestral branch of web-building spiders were preferentially expressed (42%) in the brain, especially in the three mushroom body-like neuronal types. By gene enrichment analysis and RNAi experiments, these genes were suggested to be involved in the learning and memory pathway and may influence the spiders’ web-building and hunting behavior. Our results provide key sources for understanding the evolution of behavior in spiders and reveal how molecular evolution drives neuron innovation and the diversification of associated complex behaviors.
2023-10-24 | GSE241696 | GEO
Project description:Dietary DNA metabarcoding of overwintering spiders in agroecosystems
Project description:Background: Lysine succinylation of proteins has potential impacts on protein structure and function, which occurred on post-translation level. However, the information about the lysine succinylation of proteins in tea plants is limited. In the present study, the significant signal of succinylation in tea plants was found by western blot. Subsequently, we performed qualitative analyses to globally identify lysine succinylation substrates by using high accuracy nano LC-MS/MS combined with affinity purification. Results: As a result, a total of 142 lysine succinylation sites were identified in 86 proteins. The identified succinylated proteins are involved in various biological processes and a large proportion of the succinylation sites are present on proteins in the primary metabolism pathway, including glyoxylate and dicarboxylate metabolism, the tricarboxylic acid (TCA) cycle and glycine, serine and threonine metabolism. Moreover, 10 new succinylated sites on histones were detected in tea plants either. Conclusions: These results suggested that succinylated proteins in tea plants might play critical regulatory roles in biological processes, especially in the primary metabolism. This study not only globally analysed the functional annotation of lysine succinylation in tea plants, but also provided valuable information for further investigating the functions of lysine succinylation in tea plants.
2022-02-23 | PXD011717 | Pride
Project description:Genome based identification and characterization of invasive crop pests
Project description:Tea (Camellia sinensis (L.) O. Kuntze) is an important non-alcoholic commercial beverage crop. Tea tree is a perennial plant, and winter dormancy is its part of biological adaptation to environmental changes. We recently discovered a novel tea tree cultivar that can generate tender shoots in winter, but the regulatory mechanism of this ever-growing tender shoot development in winter is not clear. In this study, we conducted a proteomic analysis for identification of key genes and proteins differentially expressed between the winter and spring tender shoots, to explore the putative regulatory mechanisms and physiological basis of its ever-growing character during winter.
Project description:BACKGROUND: Evaluation of the airway transcriptome may reveal patterns of gene expression that are associated with clinical phenotypes of asthma. To define transcriptomic endotypes of asthma (TEA) we analyzed gene expression in induced sputum that correlate with phenotypes of disease. METHODS: Gene expression was measured in sputum of subjects with asthma using Affymetrix HuGene ST 1.0 microarrays. Unsupervised clustering analysis of genes in pathways selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) identified TEA clusters. Clinical characteristics were compared and logistic regression analysis of matched blood samples defined an expression profile to determine the TEA cluster assignment in a cohort of children with asthma for validation. RESULTS: Three TEA clusters were identified. TEA cluster 1 had the most subjects with a history of intubation (P = 0.05), a lower pre-bronchodilator FEV1 (P = 0.006), a higher bronchodilator response (P = 0.03), and higher exhaled nitric oxide levels (P = 0.04), compared to the other TEA clusters. TEA cluster 2, the smallest cluster had the most subjects that were hospitalized for asthma (P = 0.04). Subjects in TEA cluster 3, the largest cluster, had normal lung function, low exhaled nitric oxide levels, and lower inhaled steroid requirements. Evaluation of TEA clusters in children confirmed that TEA clusters 1 and 2 are associated with a history of intubation (P = 5.58 x 10-06) and hospitalization (P = 0.01), respectively. CONCLUSIONS: Patterns of gene expression in the sputum and blood reveal TEA clusters that are associated with severe asthma phenotypes in children and adults. Gene expression was measured in sputum of subjects with asthma using Affymetrix HuGene ST 1.0 microarrays. Unsupervised clustering analysis of genes in pathways selected from the Kyoto Encyclopedia of Genes and Genomes (KEGG) identified TEA clusters. Clinical characteristics were compared and logistic regression analysis of matched blood samples defined an expression profile to determine the TEA cluster assignment in a cohort of children with asthma for validation.
Project description:For developing the more SNPs and new high-density genetic linkage map of tea plant, two parents and their 326 progenies and 147 registered tea cultivars was sequencing by newly developed Affymetrix Axiom genotyping technology