Project description:Bifidobacterium breve represents one of the most abundant (bifido)bacterial species in the gastro-intestinal tract of (breast-fed) infants, where their presence is believed to be beneficial. In the present study whole genome sequencing, employing PacBio’s Single Molecule, Real-Time (SMRT) sequencing platform, combined with comparative genome analysis allowed the most extensive genetic investigation of this taxon. Our findings demonstrate that Restriction/Modification (R/M) systems constitute a substantial part of the B. breve variome. Availing of the methylome data generated by SMRT sequencing, combined with targeted Illumina bisulfite sequencing (BiSeq) and comparative genome analysis, we were able to detect methylation recognition motifs and assign these to identified B. breve R/M systems, where in several cases such assignments were confirmed by restriction analysis. Furthermore, cloning of a selected methyltransferase-encoding gene validated the activity of the corresponding R/M system, and was shown to overcome the barrier they impose to genetic accessibility, thus allowing future genetic manipulation of members of this species.
Project description:The domestic goat, Capra hircus (2n=60), is one of the most important domestic livestock species in the world. Here we report its high quality reference genome generated by combining Illumina short reads sequencing and a new automated and high throughput whole genome mapping system based on the optical mapping technology which was used to generate extremely long super-scaffolds. The N50 size of contigs, scaffolds, and super-scaffolds for the sequence assembly reported herein are 18.7 kb, 3.06 Mb, and 18.2 Mb, respectively. Almost 95% of the supper-scaffolds are anchored on chromosomes based on conserved syntenic information with cattle. The assembly is strongly supported by the RH map of goat chromosome 1. We annotated 22,175 protein-coding genes, most of which are recovered by RNA-seq data of ten tissues. Rapidly evolving genes and gene families are enriched in metabolism and immune systems, consistent with the fact that the goat is one of the most adaptable and geographically widespread livestock species. Comparative transcriptomic analysis of the primary and secondary follicles of a cashmere goat revealed 51 genes that were significantly differentially expressed between the two types of hair follicles. This study not only provides a high quality reference genome for an important livestock species, but also shows that the new automated optical mapping technology can be used in a de novo assembly of large genomes. Corresponding whole genome sequencing is available in NCBI BioProject PRJNA158393. We have sequenced a 3-year-old female Yunnan black goat and constructed a reference sequence for this breed. In order to improve quality of gene models, RNA samples of ten tissues (Bladder, Brain, Heart, Kidney, Liver, Lung, Lymph, Muscle, Ovarian, Spleen) were extracted from the same goat which was sequenced. To investigate the genic basis underlying the development of cashmere fibers using the goat reference genome assembly and annotated genes, we extracted RNA samples of primary hair follicle and secondary hair follicle from three Inner Mongolia cashmere goats and conducted transcriptome sequencing and DGE analysis. This submission represents RNA-Seq component of study.
Project description:We describe a suite of predictive models, coined FASTmC, for non-reference, cost-effective exploration and comparative analysis of context-specific DNA methylation levels. Accurate estimations of true DNA methylation levels can be obtained from as few as several thousand short-reads generated from whole genome bisulfite sequencing. Our models make high-resolution time course or developmental, and large diversity studies practical regardless of species, genome size and availability of a reference genome.
Project description:Intervention type:DRUG
Name of intervention:Huaier
Dose form / Japanese Medical Device Nomenclature:GRANULES
Route of administration / Site of application:ORAL
Dose per administration:20?
g
Dosing frequency / Frequency of use:OTHER, SPECIFY
20g? per day
Planned duration of intervention:3 months to extending if necessary
Intended dose regimen:20 to 60/day by either bulk or split for 3 months to extended term if necessary
detailes of teratment arms:hepatocellular carcinoma, breast cancer, colorectal cancer and related gastrointestinal cancers, urologic cancers including prostate cancer, pancreas cancer, and lung cancer, etc.
Comparative intervention name:None
Dose form / Japanese Medical Device Nomenclature:
Route of administration / Site of application:
Dose per administration:
Dosing frequency / Frequency of use:
Planned duration of intervention:
Intended dose regimen:
Primary outcome(s): For mRNA libraries, focus on mRNA studies. Data analysis includes sequencing data processing and basic sequencing data quality control, prediction of new transcripts, differential expression analysis of genes. Gene Ontology (GO) and the KEGG pathway database are used for annotation and enrichment analysis of up-regulated genes and down-regulated genes.
For small RNA libraries, data analysis includes sequencing data process and sequencing data process QC, small RNA distribution across the genome, rRNA, tRNA, alignment with snRNA and snoRNA, construction of known miRNA expression pattern, prediction New miRNA and Study of their secondary structure Based on the expression pattern of miRNA, we perform not only GO / KEGG annotation and enrichment, but also different expression analysis.
Study Design: Comparative test, None, No, open(masking not used), EXPLORATORY
Project description:<p><em>Tripterygium wilfordii</em> is a vine used in Traditional Chinese Medicine (TCM) from the family Celastraceae. The active ingredient celastrol is a friedelane-type pentacyclic triterpenoid, with a putative role as an anti-tumor, immunosuppression, and obesity agent. Here we reported a reference genome assembly of <em>T. wilfordii</em> with high-quality annotation by using a hybrid sequencing strategy, which obtained a 340.12 Mb total genome size, a contig N50 reaching 3.09 Mb, 31593 structure genes, and the repeat percentage was 44.31%. Comparative evolutional analyses showed that <em>T. wilfordii</em> diverged from species of Malpighiales about 102.4 million years ago. In addition, we successfully anchored 91.02% sequences into 23 pseudochromosomes using Hi-C technology and the super-scaffold N50 reached 13.03 Mb. Based on integration of genome, transcriptome and metabolite analyses, as well as in vivo and in vitro enzyme assays of the two CYP450 genes, <em>TwCYP712K1</em> and <em>TwCYP712K2</em> the second biosynthesis step of celastrol was investigated and elucidated. Syntenic analysis revealed that <em>TwCYP712K1</em> and <em>TwCYP712K2</em> derived from a common ancestor. These results have provided insights into further investigating pathways for celastrol and valuable information to aid the conservation of resources and helped us reveal the evolution of Celastrales.</p>
Project description:Cytosine methylation is a base modification that is often used by genomes to store information that is stably inherited through mitotic cell divisions. Most cytosine DNA methylation is stable throughout different cell types or by exposure to different environmental conditions in plant genomes. Here, we profile the epigenomes of ~100 Phaseolus vulgaris lines to explore the extent of natural epigenomic variation. We also use these data to determine the extent to which DNA methylation variants are linked to genetic variations.
Project description:Cytosine methylation is a base modification that is often used by genomes to store information that is stably inherited through mitotic cell divisions. Most cytosine DNA methylation is stable throughout different cell types or by exposure to different environmental conditions in plant genomes. Here, we profile the epigenomes of ~100 Glycine max lines to explore the extent of natural epigenomic variation. We also use these data to determine the extent to which DNA methylation variants are linked to genetic variations.
Project description:Cytosine methylation is a base modification that is often used by genomes to store information that is stably inherited through mitotic cell divisions. Most cytosine DNA methylation is stable throughout different cell types or by exposure to different environmental conditions in plant genomes. Here, we profile the epigenomes of ~100 Medicago truncatula lines to explore the extent of natural epigenomic variation. We also use these data to determine the extent to which DNA methylation variants are linked to genetic variations.
Project description:Aspergillus display an amazing level of diversity in physiologies, and environments that they occupy. Strategies for coping with diverse environmental stresses have evolved in different Aspergillus species. Therefore, Aspergillus are considered to be good models for investigating the adaptation and response to many natural and anthropogenic environmental stressors. Recent genome sequencing projects in several Aspergillus have provided insights into the molecular and genetic mechanisms underlying their responses to some environmental stressors. However, to better clarify the conserved and differentiated features of the adaptive response to specific stresses and to trace the evolutionary process of environmental adaptation and response in Aspergillus, insight from more Aspergillus species with different evolutionary positions, such as A. glaucus, and thus offer a large number of models of adaptation and response to various environmental stresses. Here, we report a high-quality reference genome assembly of A. glaucus CCHA from the surface of wild vegetation around saltern of Jilin, China, based on sequence data from whole-genome shotgun (WGS) sequencing platforms of Illumina solexa technologies. This assembly contains 106 scaffolds ( >1 Kb; N50 = ~0.795 Mb), has a length of ~28.9 Mb and covers ~97% of the predicted genome size (~120 Mb). Together with the data analyses from comprehensive transcriptomic surveys and comparative genomic analyses, we aim to obtain new insights into molecular mechanisms of the adaptation to living at high salt in the saltern
Project description:Somatic variation is a valuable source of trait diversity in clonally propagated crops. In grapevine, which has been clonally propagated worldwide for centuries, important phenotypes such as white berry colour are the result of genetic changes caused by transposable elements. Additionally, epiallele formation may play a role in determining geo-specific (‘terroir’) differences in grapes and thus ultimately in wine. This genomic plasticity might be co-opted for crop improvement via somatic embryogenesis, but that depends on a species-specific understanding of the epigenetic regulation of transposable element (TE) expression and silencing in these cultures. For this reason, we used whole-genome bisulphite sequencing, mRNA sequencing and small RNA sequencing to study the epigenetic status and expression of TEs in embryogenic callus, in comparison with leaf tissue.