Project description:We utilized single cell-indexed custom RNA-sequencing to interogate the transcriptomes of IgG1 specific germinal center B cells and Plasma cells at steady state and six days after actue antibody mediated PD1 blockade
Project description:Mitochondrial DNA (mtDNA) encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutations in the cancer genome, with truncating mutations in complex I genes being over-represented1 . While mtDNA mutations have been associated with both improved and worsened prognoses in several cancer lineages1–3, whether these mutations are drivers, or exert any functional effect on tumour biology remains controversial. Here we discover that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment of mouse and human cancer in a mutation load-dependent fashion, encouraging an anti-tumour immune response. This subsequently sensitises both mouse and human cancers with high mtDNA mutant heteroplasmy to immune checkpoint blockade. Strikingly, patient lesions bearing >50% mtDNA mutation load demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
Project description:Mitochondrial DNA (mtDNA) encodes essential machinery for respiration and metabolic homeostasis but is paradoxically among the most common targets of somatic mutations in the cancer genome, with truncating mutations in complex I genes being over-represented1 . While mtDNA mutations have been associated with both improved and worsened prognoses in several cancer lineages1–3, whether these mutations are drivers, or exert any functional effect on tumour biology remains controversial. Here we discover that complex I-encoding mtDNA mutations are sufficient to remodel the tumour immune landscape and therapeutic resistance to immune checkpoint blockade. Using mtDNA base editing technology we engineered recurrent truncating mutations in the mtDNA-encoded complex I gene, Mt-Nd5, into murine models of melanoma. Mechanistically, these mutations promoted utilisation of pyruvate as a terminal electron acceptor and increased glycolytic flux driven by an over-reduced NAD pool and NADH shuttling between GAPDH and MDH1, mediating a Warburg-like metabolic shift. In turn, without modifying tumour growth, this altered cancer cell-intrinsic metabolism reshaped the tumour microenvironment of mouse and human cancer in a mutation load-dependent fashion, encouraging an anti-tumour immune response. This subsequently sensitises both mouse and human cancers with high mtDNA mutant heteroplasmy to immune checkpoint blockade. Strikingly, patient lesions bearing >50% mtDNA mutation load demonstrated a >2.5-fold improved response rate to checkpoint inhibitor blockade. Taken together these data nominate mtDNA mutations as functional regulators of cancer metabolism and tumour biology, with potential for therapeutic exploitation and treatment stratification.
Project description:Although macrophage-epithelioid cell (EPC)-giant cell (GC) differentiation is acknowledged in foreign body reaction (FBR), the exact molecular features remain elusive. To discover the molecular profiles of EPC and GC, we analyzed mouse sponge and silk FBRs by integrating single-cell RNA-sequencing (scRNA-seq) and spatial sequencing.
Project description:Blockade of immune checkpoint proteins (e.g., CTLA-4, PD-1) improves overall survival in advanced melanoma; however, therapeutic benefit is limited to only a subset of patients. Because checkpoint blockade acts by "removing the brakes" on effector T cells, the efficacy of checkpoint blockade may be constrained by the limited pool of melanoma-reactive T cells in the periphery. In the thymus, autoimmune regulator (Aire) promotes deletion of T cells reactive against self-antigens that are also expressed by tumors. Thus, while protecting against autoimmunity, Aire also limits the generation of melanoma-reactive T cells. Here, we show that Aire deficiency in mice expands the pool of CD4+ T cells capable of melanoma cell eradication and has additive effects with anti-CTLA-4 antibody in slowing melanoma tumor growth and increasing survival. Moreover, pharmacologic blockade of central T cell tolerance and peripheral checkpoint blockade in combination enhanced antimelanoma immunity in a synergistic manner. In melanoma patients treated with anti-CTLA-4 antibody, clinical response to therapy was associated with a human Aire polymorphism. Together, these findings suggest that Aire-mediated central tolerance constrains the efficacy of peripheral checkpoint inhibition and point to simultaneous blockade of Aire and checkpoint inhibitors as a novel strategy to enhance antimelanoma immunity.
Project description:Although macrophage-epithelioid cell (EPC)-giant cell (GC) differentiation is acknowledged in foreign body reaction (FBR), the exact molecular features remain elusive. To discover the molecular profiles of EPC and GC, we analyzed mouse sponge and silk FBRs by integrating single-cell RNA-sequencing (scRNA-seq) and spatial sequencing.
Project description:Silicone-based medical devices are widely used in chronic implants and are generally perceived to be safe. However, immune-related complications including malignancies have recently been linked to textured breast implants. Here, we examine the influence of clinically approved breast implants surface features on host immune responses. Prosthetics with surface roughness of 0, 4, and 90 (Ra) were implanted in mammary fat pads of mice for 2 weeks and cells adjacent to the resulting tissue capsules were evaluated for foreign body immune responses using single-cell RNA-seq. Our findings identify a unique and finely tuned surface topography that is capable of modulating implant immunity to suppress foreign body response.
Project description:Single cell transcriptomes of CD45+ cells from KPC tumor subcutaneous allografts, either treated with PD-1+CTLA-4 checkpoint blockade or treatment-naïve.