Project description:Microarray comparative genome hybridization (mCGH) data was collected from one Neisseria cinerea, two Neisseria lactamica, two Neisseria gonorrhoeae, and 48 Neisseria meningitidis isolates. For N. meningitidis, these isolates are from diverse clonal complexes, invasive and carriage strains, and all major serogroups. The microarray platform represented N. meningitidis strains MC58, Z2491, and FAM18 and N. gonorrhoeae FA1090.
Project description:The overall goals and objectives of this study are to investigate the transcriptomics of Neisseria gonorrhoeae using RNA-seq. This work will look at gene expression, start points of transcription, transcriptional termination, and differences between these in different conditions and between strains and growing cultures over time.
Project description:Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms over glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of this biofilm formation, transcriptional profiles of N. gonorrhoeae biofilm were compared to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 hours in continuous flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. When biofilm was compared to planktonic growth, 3.8 % of the genome was differentially regulated. Genes highly up-regulated in biofilm included aniA, norB, and ccp, which play critical roles in anaerobic metabolism and oxidative stress tolerance. Down-regulated genes included the nuo gene cluster (NADH dehydrogenase) and the cytochrome bcI complex, which are involved in aerobic respiration and are thought to contribute to endogenous oxidative stress. Furthermore, we determined that aniA, ccp, and norB insertional mutants are attenuated for biofilm formation over glass and transformed human cervical epithelial cells (THCEC). This data suggests that biofilm formation could minimize oxidative stress during cervical infection and allow N. gonorrhoeae to maintain a nitric oxide steady state that may be anti-inflammatory.