Project description:Tuberculosis (TB) is one of the deadliest infectious disorders in the world. To effectively TB manage, an essential step is to gain insight into the lineage of Mycobacterium tuberculosis (MTB) strains and the distribution of drug resistance. Although the Campania region is declared a cluster area for the infection, to contribute to the effort to understand TB evolution and transmission, still poorly known, we have generated a dataset of 159 genomes of MTB strains, from Campania region collected during 2018-2021, obtained from the analysis of whole genome sequence data. The results show that the most frequent MTB lineage is the 4 according for 129 strains (81.11%). Regarding drug resistance, 139 strains (87.4%) were classified as multi susceptible, while the remaining 20 (12.58%) showed drug resistance. Among the drug-resistance strains, 8 were isoniazid-resistant MTB (HR-MTB), 7 were resistant only to one antibiotic (3 were resistant only to ethambutol and 3 isolate to streptomycin while one isolate showed resistance to fluoroquinolones), 4 multidrug-resistant MTB, while only one was classified as pre-extensively drug-resistant MTB (pre-XDR). This dataset expands the existing available knowledge on drug resistance and evolution of MTB, contributing to further TB-related genomics studies to improve the management of TB infection.
Project description:Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical, and cultural traditions1,2. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa, and Asia - in what is termed the Jewish Diaspora3-5. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people6. While many genetic studies have shed light on Jewish diseases and origins, including those focusing on uniparentally- and biparentally-inherited markers7-16, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbors have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities, and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not been previously reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and North Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight sub-cluster that overlies Druze and Cypriot samples, but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Bene Israel Indian Jews cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively; despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant.
Project description:We report the application of RNA sequencing to assess the expression dynamics of miRNAs and their isoforms over time upon infection with a panel of six intracellular bacteria (Mycobacterium tuberculosis H37Rv, Mycobacterium tuberculosis Beijing strain GC1237, Mycobacterium bovis BCG, Salmonella typhimurium strain Keller, Staphloccocus epidermidis and Yersinia pseudotuberculosis)
Project description:HupB is a 28 kDa in Mycobacterium tuberculosis that is co-expressed with the siderophores mycobactin and carboxymycobactin upon iron limitation. High levels of all the three components are seen in low iron (LI; 0.02 M-BM-5g Fe / mL) organisms, with negligible expression in high iron organisms (HI; 8 M-BM-5g Fe / mL). We generated a hupB knock out mutant of M. tuberculosis (H37Rv M-bM-^HM-^F hupB) and studied the differential expression of genes upon iron limitation in the WT H37Rv and the mutant. The RNA transcripts of the WT H37Rv, grown under high and low iron conditions of growth were isolated and subjected to microarray analysis to identify the iron-regulated genes and second, the differential expression of genes in iron-limited H37Rv M-bM-^HM-^F hupB vs iron-limited WT H37Rv was analysed. Microarray analysis was done commercially by Genotypic Technology (Bangalore, India), an authorised service provider for Agilent Technologies. The study revealed the up-regulation of all the mbt genes of the mycobactin biosynthetic machinery in LI - H37Rv and several other reported iron-regulated genes. The salient feature of this study is the failure of LI - H37Rv M-bM-^HM-^F hupB to show any up-regulation of the mbt genes as compared to LI - H37Rv. Among several other genes influenced by HupB, the mutant strain showed low levels of mmpL5 and mmpS5 transcripts, whose expressed products are reported to be associated with siderophore transport and biosynthesis. One-color experiment,Organism: Mycobacterium tuberculosis ,Custom Mycobacterium tuberculosis 8x15k Array designed byGenotypic Technology Private Limited (AMADID: 20181), Labeling kit: Agilent Quick-Amp labeling Kit (p/n5190-0442)
Project description:Transcriptional profiling of SirR and manganese regulated expression of genes in Mycobacterium tuberculosis strains comparing high manganese vs. low manganese in Rv (wild type Mycobacterium tuberculosis) and ST70 (mntR mutant strain of Mycobacterium tuberculosis)
Project description:Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical, and cultural traditions1,2. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa, and Asia - in what is termed the Jewish Diaspora3-5. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people6. While many genetic studies have shed light on Jewish diseases and origins, including those focusing on uniparentally- and biparentally-inherited markers7-16, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbors have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities, and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not been previously reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and North Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight sub-cluster that overlies Druze and Cypriot samples, but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Bene Israel Indian Jews cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively; despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant. 466 samples are analysed on three different Illumina platforms.