Project description:The Pleiotropic Drug Resistance (PDR) network is central to the drug response in fungi, and its overactivation is associated with drug resistance. However, gene regulation of the PDR network is not well understood. Here, we established a method to identify proteins that bind promoter of the PDR5 multidrug transporter gene in Saccharomyces cerevisiae using minichromosome isolation and SILAC-based quantitative proteomics, and identified the SWI/SNF chromatin remodelling complex as a PDR5 promoter-binding complex. We also purified the SWI/SNF complex from S. cerevisiae by immunoprecipitating Flag-tagged Snf6, a subunit of SWI/SNF, and identified the subunits of SWI/SNF and its binding proteins by LC-MS/MS.
Project description:The Saccharomyces cerevisiae Snf/Swi complex has been previously demonstrated to control transcription and chromatin structure of particular genes in vivo and to remodel nucleosomes in vitro. We have performed whole-genome expression analysis, using DNA microarrays, to study mutants deleted for a gene encoding one conserved (Snf2) or one unconserved (Swi1) Snf/Swi component. This analysis was performed on cells grown in both rich and minimal media. The microarray results, combined with Northern blot, computational, and genetic analyses, show that snf2Delta and swi1Delta mutations cause similar effects on mRNA levels, that Snf/Swi controls some genes differently in rich and minimal media, and that Snf/Swi control is exerted at the level of individual genes rather than over larger chromosomal domains. In addition, this work shows that Snf/Swi controls mRNA levels of MATalpha-specific genes, likely via controlling transcription of the regulators MATalpha1 and MCM1. Finally, we provide evidence that Snf/Swi acts both as an activator and as a repressor of transcription, and that neither mode of control is an indirect effect of the other. This study is described in more detail in Sudarsanam P et al.(2000) Proc Natl Acad Sci U S A 97:3364-9 Keywords: other
Project description:Total RNA samples from three replicate cultures of wild type and mutant yeast strains was isolated and expression profile done using Affymetrix arrays. Comparsion between the samples indicate how mutation in a single amino acid residue in histone H4 (H4R45H) affects gene expression in yeast. Such a mutation in histone H4 is known to generate a specific class of mutants called SWI/SNF independent (SIN) mutants, and the mutants were identified by their ability to carry out transcription in the absence of yeast chromatin remodeling complex SWI/SNF. SIN mutations are known to affect higher order chromatin structure and the comparative expression profile would help identification of genes which get affected by such altered chromatin landscape. Keywords: mutant analysis
Project description:SWI/SNF chromatin remodeling complexes play critical roles in transcription and other chromatin-related processes. The analysis of the two members of this class in Saccharomyces cerevisiae, SWI/SNF and RSC, has heavily contributed to our understanding of these complexes. To understand the in vivo functions of SWI/SNF and RSC in an evolutionarily distant organism, we have characterized these complexes in Schizosaccharomyces pombe. While core components are conserved between the two yeasts, the compositions of S. pombe SWI/SNF and RSC differ from their S. cerevisiae counterparts and in some ways are more similar to metazoan complexes. Furthermore, several of the conserved proteins, including actin-like proteins, are strikingly different between the two yeasts with respect to their requirement for viability. Finally, phenotypic and microarray analyses identified widespread requirements for SWI/SNF and RSC on transcription including strong evidence that SWI/SNF directly represses iron transport genes.
Project description:SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are a family of chromatin remodellers that are conserved across eukaryotes. Mutations in subunits of SWI/SNF cause a multitude of different developmental disorders in humans, most of which have no current treatment options. Here we identify an alanine to valine causing mutation in the SWI/SNF subunit snfc-5 (SMARCB1 in humans) that prevents embryonic lethality in C. elegans nematodes harbouring a loss-of-function mutation in the SWI/SNF subunit swsn-1 (SMARCC1/2 in humans). Furthermore, we found that the combination of this specific mutation in snfc-5 and a loss-of-function mutation in either of the E3 ubiquitin ligases ubr-5 (UBR5 in humans) or hecd-1 (HECTD1 in humans) can restore development to adulthood in swsn-1 loss-of-function mutants that otherwise die as embryos. Using these mutant models, we established a set of 335 genes that are dysregulated in SWI/SNF mutants that arrest their development embryonically but exhibit near wild-type levels of expression in the presence of suppressor mutations that prevent embryonic lethality, suggesting that SWI/SNF promotes development by regulating this specific subset of genes. In addition, we show that SWI/SNF protein levels are reduced in swsn-1; snfc-5 double mutants and partly restored to wild-type levels in swsn-1; snfc-5; ubr-5 triple mutants, consistent with a model in which UBR-5 regulates SWI/SNF levels by tagging the complex for proteasomal degradation. Our findings establish a link between two E3 ubiquitin ligases and SWI/SNF function and suggest that UBR5 and HECTD1 might be viable therapeutic targets for the many developmental disorders caused by missense mutations in SWI/SNF subunits.
Project description:To understand the gene expression in Saccharomyces cerevisiae under fermentative and respiraotry conditions, we perfomred the genome-wide gene expression profiling for the log-phase cells of S. cerevisiae wild type, sef1 deletion, and hyperactive SEF1-VP16 mutants under the YPD and YPGly conditions.
Project description:The intracellular metabolome of S. cerevisiae mutants in the gene AYT1 were measured under glucose growth conditions, as well as growth on oleate.