Project description:Snakebite by Deinagkistrodon acutus often leads to severe tissue necrosis, hemorrhage and inflammation due to the high content of metalloproteinase (SVMP) and phospholipase A2 (PLA2). These impairments can be significantly alleviated by serum of Sinonatrix annularis, a nonvenomous snake endogenous in China. Here, the proteome alteration of envenomed mice were determined using TMT labeling technique to clarify the mechanism of D. acutus envenomation and S. annularis protection.
Project description:BackgroundStudies directed at understanding the demography and population dynamics of corals are relatively scarce. This limits our understanding of both the dynamics of coral populations and our capacity to develop management and conservation initiatives directed at conserving such ecosystems.MethodsFrom 2012 to 2014, we collected data on the growth, survival, and recruitment rates of two common Caribbean coral species, the stress-tolerant Orbicella annularis and the weedy Porites astreoides. A set of size-based population matrix model was developed for two localities in Northeastern Puerto Rico and used to estimate population growth rates (λ) and determine the life cycle transition(s) that contribute the most to spatiotemporal differences in λs. The model was parameterized by following the fate of 100 colonies of each species at the two sites for two years.ResultsOur data indicate that spatial variability in vital rates of both species was higher than temporal variability. During the first year, populations of O. annularis exhibited λs below equilibrium at Carlos Rosario (0.817) and Palomino (0.694), followed by a considerable decline at both sites during the second year (0.700 and 0.667). Populations of P. astreoides showed higher λs than O. annularis during the first census period at Carlos Rosario (0.898) and Palomino (0.894) with a decline at one of the sites (0.681 and 0.893) during the second census period. Colony fate in both species exhibited a significant interaction with respect to location but not to time (G2 = 20.96; df = 3 for O. annularis and G2 = 9.55; df = 3 for P. astreoides).DiscussionThe similar variability of λs as well as the similar survival rates for both species during the two-year census period (2012-2014) show similar variability on demographic patterns in space and time. Our results suggest that location rather than time is important for the resiliency in coral colonies. Also, P. astreoides will show higher resistance to disturbance in the future than O. annularis.
Project description:The physiological performance of a reef-building coral is a combined outcome of both the coral host and its algal endosymbionts, Symbiodinium While Orbicella annularis-a dominant reef-building coral in the Wider Caribbean-is known to be a flexible host in terms of the diversity of Symbiodinium types it can associate with, it is uncertain how this diversity varies across the Caribbean, and whether spatial variability in the symbiont community is related to either O. annularis genotype or environment. Here, we target the Symbiodinium-ITS2 gene to characterize and map dominant Symbiodinium hosted by O. annularis at an unprecedented spatial scale. We reveal northwest-southeast partitioning across the Caribbean, both in terms of the dominant symbiont taxa hosted and in assemblage diversity. Multivariate regression analyses incorporating a suite of environmental and genetic factors reveal that observed spatial patterns are predominantly explained by chronic thermal stress (summer temperatures) and are unrelated to host genotype. Furthermore, we were able to associate the presence of specific Symbiodinium types with local environmental drivers (for example, Symbiodinium C7 with areas experiencing cooler summers, B1j with nutrient loading and B17 with turbidity), associations that have not previously been described.