Project description:RNA-seq was used to assess mRNA transcript abundance in wild type and fra2Δ S. cerevisiae (BY4741) cells treated with 2-(6-benzyl-2-pyridyl)quinazoline (BPQ) and CuSO4. BPQ potentiates copper toxicity and in yeast, in common with other organisms, a major cause of copper toxicity is damage of iron-sulphur clusters. Iron sensing within yeast relies on mitochondrial iron-sulphur cluster biosynthesis and therefore treatment with BPQ and copper can be used to mimic iron deficiency. Fra2 is known to be a key component of the iron sensing mechanism; however, this mechanism can operate, to an extent, independently of Fra2. BPQ (+CuSO4) treatment was used with the aim of probing the regulation of the iron regulon of S. cerevisiae and the role of Fra2 in the suppression of the low iron response. This study has uncovered nine new Cth2 target-transcripts, plus a new Aft1 target-gene and paralogous non-target. Fra2 dominates basal repression of the iron regulon in iron-replete cultures, however, Fra2-independent control of the iron regulon is also observed with CTH2 appearing to be atypically Fra2-dependent. Transcripts from untreated and CuSO4 treated cells were included as controls.
Project description:RNA-seq was used to assess mRNA transcript abundance in wild type and fra2M-NM-^T S. cerevisiae (BY4741) cells treated with 2-(6-benzyl-2-pyridyl)quinazoline (BPQ) and CuSO4. BPQ potentiates copper toxicity and in yeast, in common with other organisms, a major cause of copper toxicity is damage of iron-sulphur clusters. Iron sensing within yeast relies on mitochondrial iron-sulphur cluster biosynthesis and therefore treatment with BPQ and copper can be used to mimic iron deficiency. Fra2 is known to be a key component of the iron sensing mechanism; however, this mechanism can operate, to an extent, independently of Fra2. BPQ (+CuSO4) treatment was used with the aim of probing the regulation of the iron regulon of S. cerevisiae and the role of Fra2 in the suppression of the low iron response. This study has uncovered nine new Cth2 target-transcripts, plus a new Aft1 target-gene and paralogous non-target. Fra2 dominates basal repression of the iron regulon in iron-replete cultures, however, Fra2-independent control of the iron regulon is also observed with CTH2 appearing to be atypically Fra2-dependent. Transcripts from untreated and CuSO4 treated cells were included as controls. Three independent biological replicates were analysed for each condition (BPQ and CuSO4 treated wild type and fra2M-NM-^T cells, CuSO4 treated wild type and fra2M-NM-^T cells and untreated wild type and fra2M-NM-^T cells)
Project description:In frozen dough baking technology, baker’s yeast Saccharomyces cerevisiae encounter freeze-thaw injury. After thawing, dramatically decrease in cell viability and fermentation activity is caused by freeze-thaw injury. The freezing period is critical factor in freeze-thaw injury, thus we focused and investigated time-dependent gene expression profiles in recovery process from freeze injury. First, changes in gene expression profiles in S. cerevisiae in recovery process from freeze-thaw injury were analyzed using a DNA microarray. The results showed the genes which were involved in homeostasis of metal ions were time-dependent up-regulated 2-fold or more in a series. Then we examined whether these genes were related to tolerance in freeze-thaw injury by using deletion strain. The results showed that deletion of MAC1, CTR1, and PCA1 genes which involved in copper ion transport exhibited freeze-thaw sensitivity in compared with wild type. These genes are involved in copper ion uptake to a cell under a copper deficiency condition or in copper ion homeostasis, suggesting that it may be related between freeze-thaw injury and copper ion transport. To determine the effect of supplementation of copper ion on cells after freeze-thaw treatment, cell viability, intracellular superoxide dismutase (SOD) activity, and intracellular levels of reactive oxygen species (ROS) were examined by various copper ion condition medium. The results showed that intracellular SOD activity was increased and intracellular levels of ROS were decreased by supplementation of copper ion, but there was no significant difference in cell viability. These results of the present study may suggest that copper ion concentration in yeast cell after freeze-thaw treatment is important to recovery from freeze-thaw injury due to redox control of intracellular levels of ROS, but copper ion did not directly affect cell viability.
Project description:In our previous work, we showed the positive effect of the magnesium and the negative effect of the copper on yeast fermentation performance. The magnesium increases the ethanol yield and a faster glucose consumption by the yeast, on the other hand, the copper provides an opposite effect in yeast under fermentation condition. Therefore, from this contrasting effect we performed the gene-wide expression analysis in the industrial yeast Saccharomyces cerevisiae JP1 under fermentation condition in order to reveal the gene expression profile upon magnesium and copper supplementation.
Project description:Dynamic transcriptional response of S. cerevisiae cells to copper impulse was investigated in both HO deletion strain used as the reference strain and the mutant strain lacking CCC2 gene which were grown in continuous cultures using a copper-deficient defined medium. Copper was introduced into the medium as an impulse so as to reach a copper sulfate concentration of 0.5 mM. Samples were collected within the first two hours following the copper addition (1st, 5th, 10th, 15th, 20th, 25th, 30th, 60th, 120th minutes), in addition to the steady-state sampling.
Project description:In our previous work, we showed the positive effect of the magnesium and the negative effect of the copper on yeast fermentation performance. The magnesium increases the ethanol yield and a faster glucose consumption by the yeast, on the other hand, the copper provides an opposite effect in yeast under fermentation condition. Therefore, from this contrasting effect we performed the gene-wide expression analysis in the industrial yeast Saccharomyces cerevisiae JP1 under fermentation condition in order to reveal the gene expression profile upon magnesium and copper supplementation. Fermentation assays was performed with the industrial yeast S. cerevisiae JP1 in reference medium (mineral concentration balanced), in the medium supplemented with 500 mg/L of magnesium (Mg2+ medium) and in the medium supplemented with 1 mg/L of copper (Cu2+ medium).
Project description:Iron is an essential cofactor for enzymes involved in numerous cellular processes. We analyzed the metabolomes and transcriptomes of yeast grown in iron-rich and iron-poor media to determine which biosynthetic processes are altered when iron availability falls. Saccharomyces cerevisiae DBY7286 strain was grown from very low density to mid-log phase (A600 = 0.5, approximately 18 hrs.) in defined-iron SD minimal medium containing only the supplements necessary to meet auxotrophic requirements. Defined-iron SD minimal media were prepared with yeast nitrogen base lacking iron and copper, supplemented with 1 µM copper sulfate, 25 mM MES pH 6.1, 1 mM Ferrozine (Fluka), and the indicated concentrations of ferrous ammonium sulfate 10 µM (low iron) or 300 µM (high iron). All cells were grown at 30°C with shaking and four independent cultures were prepared for each growth condition