Project description:Complex oligosaccharides found in human milk play a vital role in gut microbiome development for the human infant. Bovine milk oligosaccharides (BMO) have similar structures with those derived from human milk, but have not been well studied for their effects on the healthy adult human gut microbiome. Healthy human subjects consumed BMO over two-week periods at two different doses and provided fecal samples. Metatranscriptomics of fecal samples was conducted to determine microbial and host gene expression in response to the supplement. Fecal samples were also analyzed by mass spectrometry to determine levels of undigested BMO. No changes were observed in microbiome activity across all participants. Repeated sampling enabled subject-specific analyses: four of six participants had minor, yet statistically significant, changes in microbial activity. No significant change was observed in the gene expression of host cells in stool. Levels of BMO excreted in feces after supplementation were not significantly different from placebo and were not correlated with dosage or expressed microbial enzyme levels. Collectively, these data suggest that BMO is fully digested in the human gastrointestinal tract prior to stool collection. Participants’ gut microbiomes remained stable but varied between individuals. Additionally, the unaltered host transcriptome provides further evidence for the safety of BMO as a dietary supplement or food ingredient.
Project description:The liver is the central organ in the regulation of nutrient metabolism, xenobiotic metabolism, and detoxification. Aging leads to a marked change in liver structure and function, characterized by a decline in weight, blood flow, regeneration rate, and detoxification. However, the mechanisms that contribute to these changes are poorly described. Global gene expression profiles of aged versus young adult dogs have not been compared previously. Thus, we used canine microarrays to compare gene expression profiles of liver tissue from geriatric and young adult dogs fed 2 different diets. Liver tissue samples were collected from 6 geriatric (12 yr-old) and 6 young adult (1 yr-old) female beagles after being fed one of two diets (animal protein-based versus plant-protein based) for 12 months. RNA samples were hybridized to Affymetrix GeneChip Canine Genome Arrays. Statistical analyses indicated that age had the greatest impact on gene expression, with 234 gene transcripts differentially expressed in geriatric dogs. Although not as robust as age, diet affected mRNA abundance of 137 gene transcripts. The effect of age was most notable, with increased expression in genes related to inflammation, oxidative stress, and glycolysis and decreased expression in genes associated with regeneration, xenobiotic metabolism, and cholesterol trafficking in senior dogs. The effect of diet on gene expression was not consistent, but led to more changes in young adult dogs. Six geriatric (11.1 yr old) and 6 weanling (8 wk old) female beagles were used. Three dogs of each age were assigned to one of two dietary treatments and fed for 12 months. Diets tested in this experiment were previously shown to manipulate energy metabolism. One diet was an animal-protein based diet (APB) and was composed primarily of highly digestible ingredients and animal-derived protein and fat sources (brewer’s rice, poultry by-product meal, poultry fat) and was formulated to contain 28% protein, 23% fat, and 5% dietary fiber. The other diet was a plant-protein based diet (PPB) and was composed primarily of moderately digestible plant-derived ingredients (corn, soybean meal, wheat middlings, and meat and bone meal) and was formulated to contain 26% protein, 11% fat, and 15% dietary fiber. Although the two diets were very different in terms of ingredient and chemical composition, both were formulated to meet or exceed all nutrient requirements for canine growth according to the Association of American Feed Control Officials. Young dogs were fed ad libitum to allow for adequate growth, while geriatric dogs were fed to maintain baseline BW throughout the experiment. To produce the desired metabolic effects, the PPB diet was formulated to contain a lower caloric density (APB = 5.38 kcal/g; PPB = 4.75 kcal/g) and have a lower nutrient digestibility than the APB diet. Thus, dogs fed the PPB diet needed to consume a greater (P<0.05) quantity of food (237 g/d; 1123 kcal/d) than dogs fed the APB diet (166 g/d; 893 kcal/d) to grow (young) or maintain BW (geriatrics). Even though metabolic indices were altered, mean BW among dietary treatments was not different at any time over the course of the study for young or geriatric dogs. After 12 months on experiment, animals were fasted for 12 hr and then given a lethal dose (130 mg/kg BW) of sodium pentobarbital (Euthasol, Virbac Corp., Fort Worth, TX) intravenously into the left forearm. Death was confirmed by lack of respiration and a corneal reflex, and absence of a heartbeat detected with a stethoscope placed under the left elbow. Liver samples were collected immediately after death was confirmed, flash frozen using liquid nitrogen, and stored at -80oC until further analysis.
Project description:Long-term dietary intake influences the structure and activity of the trillions of microorganisms residing in the human gut, but it remains unclear how rapidly and reproducibly the human gut microbiome responds to short-term macronutrient change. Here we show that the short-term consumption of diets composed entirely of animal or plant products alters microbial community structure and overwhelms inter-individual differences in microbial gene expression. The animal-based diet increased the abundance of bile-tolerant microorganisms (Alistipes, Bilophila and Bacteroides) and decreased the levels of Firmicutes that metabolize dietary plant polysaccharides (Roseburia, Eubacterium rectale and Ruminococcus bromii). Microbial activity mirrored differences between herbivorous and carnivorous mammals, reflecting trade-offs between carbohydrate and protein fermentation. Foodborne microbes from both diets transiently colonized the gut, including bacteria, fungi and even viruses. Finally, increases in the abundance and activity of Bilophila wadsworthia on the animal-based diet support a link between dietary fat, bile acids and the outgrowth of microorganisms capable of triggering inflammatory bowel disease. In concert, these results demonstrate that the gut microbiome can rapidly respond to altered diet, potentially facilitating the diversity of human dietary lifestyles. RNA-Seq analysis of the human gut microbiome during consumption of a plant- or animal-based diet.
Project description:Aging alters gastrointestinal morphology, microbiota, and functionality, and is associated with increased incidence of intestinal disease. The mechanisms that contribute to these changes are poorly described. Gene expression in dogs has been evaluated for a few select genes under pathogenic or varying dietary conditions, but global gene expression profiles of aged versus young adult dogs have not been compared previously. Thus, we used canine microarrays to compare gene expression profiles of colonic epithelial tissue from geriatric and young adult dogs fed 2 different diets. Colon tissue samples were collected from 6 geriatric (12 yr-old) and 6 young adult (1 yr-old) female beagles after being fed one of two diets (animal protein-based versus plant-protein based) for 12 months. RNA samples were hybridized to Affymetrix GeneChip Canine Genome Arrays. Statistical analyses indicated that age had the greatest impact on gene expression, with 212 genes differentially expressed in geriatric dogs. Although not as robust as age, diet affected mRNA abundance of 66 genes. The effect of age was most notable, with increased expression in genes related to inflammation, stress response, cellular metabolism and cell proliferation and decreased expression in genes associated with apoptosis and defense mechanism in senior dogs. The effect of diet on gene expression was not consistent, but appeared to have a greater response in senior dogs. Six geriatric (11.1 yr old) and 6 weanling (8 wk old) female beagles were used. Three dogs of each age were assigned to one of two dietary treatments and fed for 12 months. Diets tested in this experiment were previously shown to manipulate energy metabolism. One diet was an animal-protein based diet (APB) and was composed primarily of highly digestible ingredients and animal-derived protein and fat sources (brewer’s rice, poultry by-product meal, poultry fat) and was formulated to contain 28% protein, 23% fat, and 5% dietary fiber. The other diet was a plant-protein based diet (PPB) and was composed primarily of moderately digestible plant-derived ingredients (corn, soybean meal, wheat middlings, and meat and bone meal) and was formulated to contain 26% protein, 11% fat, and 15% dietary fiber. Although the two diets were very different in terms of ingredient and chemical composition, both were formulated to meet or exceed all nutrient requirements for canine growth according to the Association of American Feed Control Officials. Young dogs were fed ad libitum to allow for adequate growth, while geriatric dogs were fed to maintain baseline BW throughout the experiment. To produce the desired metabolic effects, the PPB diet was formulated to contain a lower caloric density (APB = 5.38 kcal/g; PPB = 4.75 kcal/g) and have a lower nutrient digestibility than the APB diet. Thus, dogs fed the PPB diet needed to consume a greater (P<0.05) quantity of food (237 g/d; 1123 kcal/d) than dogs fed the APB diet (166 g/d; 893 kcal/d) to grow (young) or maintain BW (geriatrics). Even though metabolic indices were altered, mean BW among dietary treatments was not different at any time over the course of the study for young or geriatric dogs. After 12 months on experiment, animals were fasted for 12 hr and then given a lethal dose (130 mg/kg BW) of sodium pentobarbital (Euthasol, Virbac Corp., Fort Worth, TX) intravenously into the left forearm. Death was confirmed by lack of respiration and a corneal reflex, and absence of a heartbeat detected with a stethoscope placed under the left elbow. Colon samples were collected immediately after death was confirmed, flash frozen using liquid nitrogen, and stored at -80oC. Frozen samples were placed in RNAlater-ICE until epithelial layer could be scraped off and used for microarray analysis.
Project description:Canine pyometra is a common inflammatory disease of the uterus in sexually mature bitches, caused by a secondary bacterial infection which leads to change in the plasma protein associated with the innate immune system. Proteomic offers a means to determine the profile of plasma in dogs with pyometra to provide important findings into general mechanisms operating during diverse inflammatory reactions. The plasma protein profile of healthy and pyometra affected bitches was determined by means of an isobaric tandem mass tag (TMT) label-based high-resolution quantitative proteomic approach. Six clinically healthy dogs (used as control group) and 6 dogs with pyometra were enrolled in the study. All dogs were admitted to the Small Animal Clinic, University of Veterinary Medicine Hannover and treated in accordance with the German Animal Welfare Law. The experimental design was approved by the Animal Welfare officer of the University of Veterinary Medicine and by the Ethic Committee of the responsible authority (Lower Saxony State Office for Consumer Protection and Food Safety, reference number 17A 101). Healthy dogs for blood collection were recruited by launching a call in the University of Veterinary Medicine Hannover network for students and staff members for haemostasis study, providing a free clinical and laboratory health check of their animal in combination with the blood collection. Residual sample material was used in the present study.
Project description:Aging alters gastrointestinal morphology, microbiota, and functionality, and is associated with increased incidence of intestinal disease. The mechanisms that contribute to these changes are poorly described. Gene expression in dogs has been evaluated for a few select genes under pathogenic or varying dietary conditions, but global gene expression profiles of aged versus young adult dogs have not been compared previously. Thus, we used canine microarrays to compare gene expression profiles of colonic epithelial tissue from geriatric and young adult dogs fed 2 different diets. Colon tissue samples were collected from 6 geriatric (12 yr-old) and 6 young adult (1 yr-old) female beagles after being fed one of two diets (animal protein-based versus plant-protein based) for 12 months. RNA samples were hybridized to Affymetrix GeneChip Canine Genome Arrays. Statistical analyses indicated that age had the greatest impact on gene expression, with 212 genes differentially expressed in geriatric dogs. Although not as robust as age, diet affected mRNA abundance of 66 genes. The effect of age was most notable, with increased expression in genes related to inflammation, stress response, cellular metabolism and cell proliferation and decreased expression in genes associated with apoptosis and defense mechanism in senior dogs. The effect of diet on gene expression was not consistent, but appeared to have a greater response in senior dogs.
Project description:Significant gut microbiota heterogeneity exists amongst UC patients though the clinical implications of this variance are unknown. European and South Asian UC patients exhibit distinct disease risk alleles, many of which regulate immune function and relate to variation in gut microbiota β-diversity. We hypothesized ethnically distinct UC patients exhibit discrete gut microbiotas with unique luminal metabolic programming that influence adaptive immune responses and relate to clinical status. Using parallel bacterial 16S rRNA and fungal ITS2 sequencing of fecal samples (UC n=30; healthy n=13), we corroborated previous observations of UC-associated depletion of bacterial diversity and demonstrated significant gastrointestinal expansion of Saccharomycetales as a novel UC characteristic. We identified four distinct microbial community states (MCS 1-4), confirmed their existence using microbiota data from an independent UC cohort, and show they co-associate with patient ethnicity and degree of disease severity. Each MCS was predicted to be uniquely enriched for specific amino acid, carbohydrate, and lipid metabolism pathways and exhibited significant luminal enrichment of metabolic products from these pathways. Using a novel in vitro human DC/T-cell assay we show that DC exposure to patient fecal water led to MCS -specific changes in T-cell populations, particularly the Th1:Th2 ratio, and that patients with the most severe disease exhibited the greatest Th2 skewing. Thus, based on ethnicity, microbiome composition, and associated metabolic dysfunction, UC patients may be stratified in a clinically and immunologically meaningful manner, providing a platform for the development of FMC-focused therapy. Fecal microbiome was assessed with Affymetrix PhyloChip arrays from patients with ulcerative colitis and healthy controls.
Project description:Mechanisms contributing to age-related cognitive decline are poorly defined. Thus, we used canine microarrays to compare gene expression profiles of brain tissue from geriatric and young adult dogs. Cerebral cortex samples were collected from 6 geriatric (12 yr-old) and 6 young adult (1 yr-old) female beagles after being fed one of two diets (animal protein-based versus plant-protein based) for 12 months. RNA samples were hybridized to Affymetrix GeneChip Canine Genome Arrays. Statistical analyses indicated that the age had the greatest impact on gene expression, with 963 transcripts differentially expressed in geriatric dogs. Although not as robust as age, diet affected mRNA abundance of 140 transcripts. As demonstrated in aged rodents and humans, geriatric dogs had increased expression of genes associated with inflammation, stress response, and calcium homeostasis and decreased expression of genes associated with neuropeptide signaling and synaptic transmission. In addition to its existing strengths, availability of gene sequence information and commercial microarrays make the canine a powerful model for studying the effects of aging on cognitive function. Keywords: age; diet Six geriatric (11.1 yr old) and 6 weanling (8 wk old) female beagles were used. Three dogs of each age were assigned to one of two dietary treatments and fed for 12 months. Diets tested in this experiment were previously shown to manipulate energy metabolism. One diet was an animal-protein based diet (APB) and was composed primarily of highly digestible ingredients and animal-derived protein and fat sources (brewer’s rice, poultry by-product meal, poultry fat) and was formulated to contain 28% protein, 23% fat, and 5% dietary fiber. The other diet was a plant-protein based diet (PPB) and was composed primarily of moderately digestible plant-derived ingredients (corn, soybean meal, wheat middlings, and meat and bone meal) and was formulated to contain 26% protein, 11% fat, and 15% dietary fiber. Although the two diets were very different in terms of ingredient and chemical composition, both were formulated to meet or exceed all nutrient requirements for canine growth according to the Association of American Feed Control Officials. Young dogs were fed ad libitum to allow for adequate growth, while geriatric dogs were fed to maintain baseline BW throughout the experiment. To produce the desired metabolic effects, the PPB diet was formulated to contain a lower caloric density (APB = 5.38 kcal/g; PPB = 4.75 kcal/g) and have a lower nutrient digestibility than the APB diet. Thus, dogs fed the PPB diet needed to consume a greater (P<0.05) quantity of food (237 g/d; 1123 kcal/d) than dogs fed the APB diet (166 g/d; 893 kcal/d) to grow (young) or maintain BW (geriatrics). Even though metabolic indices were altered, mean BW among dietary treatments was not different at any time over the course of the study for young or geriatric dogs. After 12 months on experiment, animals were fasted for 12 hr and then given a lethal dose (130 mg/kg BW) of sodium pentobarbital (Euthasol, Virbac Corp., Fort Worth, TX) intravenously into the left forearm. Death was confirmed by lack of respiration and a corneal reflex, and absence of a heartbeat detected with a stethoscope placed under the left elbow. Cerebral cortex samples were collected immediately after death was confirmed, flash frozen using liquid nitrogen, and stored at -80oC until further analysis.