Project description:Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. In this whole-genome transcriptome study of rice early defense response to M. oryzae, we applied Affymetrix Rice Genome Genechip to compare the compatible and incompatible rice-M. oryzae interactions in 24 hours post-inoculation.
Project description:Treatment of rice roots with glutamate (Glu) induces systemic disease resistance against rice blast in leaves. To analyze the effect of Glu on the transcriptome of rice, rice roots were treated with Glu solution, and then fourth leaves were harvested and analyzed by Agilent rice microarray.
Project description:Rice stripe virus (RSV) is one of the major virus diseases of rice in East Asia. Rice plants infected with RSV usually show symptoms such as chlorotic leaf stripes, weakness and senescence of leaves, and dwarfism. In order to characterize the host response to RSV infection at the gene expression level, the changes in transcriptome profiles of RSV-infected rice were monitored at three, six, nine, twelve, and fifteen days after inoculation by a rice oligomicroarray. The microarray data indicated that 1. transcription, translation and protein processing machineries were activated, 2. chloroplasts were disintegrated, and mitochondrion function was activated, 3. genes for transporters and cell wall synthesis were suppressed, and 4. the expression levels of pathogenesis-related genes were changed by RSV infection. Concurrent observation of symptom development, virus accumulation and transcriptome profiles in RSV-infected plants indicates that RSV symptoms are caused by unbalanced activities of organelles, suppression of cell elongation, and uncontrolled water transport, while translation activity of host cells may be increased in correlation with RSV propagation. Keywords: time course, virus infection, disease response
Project description:Background and study aims
Colorectal cancer (CRC) is one of the most commoncancers among humans worldwide. Recent studies demonstrated that the composition of the bacterial community in the human gut, as well as inflammation occurring in the gut, are some of the factors that modify the risk of an individual to develop CRC. The human gut is home to more than 1000 bacterial species, including health-promoting species and disease-causing species.
The consumption of rice bran, a by-product of rice milling, was previously shown to positively modify bacterial composition in the gut among healthy adults. The protective effect of a long-term rice bran consumption against CRC among individuals known to have higher risk of CRC, such as older individuals who are regular smokers and having a family history of CRC, needs to be established.
This study aims to investigate whether the implementation of a 24-week dietary programme involving rice bran consumption among adults at high risk of CRC is feasible, and whether it has any effect in inducing a health-promoting modification of the bacterial community, as well as a reduction of inflammation, in the gut of these individuals.
Who can participate?
Chinese adults of either gender, who are aged 50 or above and are categorised to be in the high risk CRC group by the Asian-Pacific Colorectal Screening tool, in which classification is based on age, smoking status and family history of CRC.
What does the study involve?
After the recruited subjects were screened for eligibility of study participation and written informed consent had been obtained from them, they were randomly assigned into either Group A or Group B. Participants in Group A were given packets of rice bran and were asked to consume 30 grams of the rice bran at 24-hour intervals for 24 weeks. Participants in Group B were given packets of rice powder that has similar appearance and colour as the rice bran, and were asked to consume 30 grams of the rice powder, also at 24-hour intervals for 24 weeks. All participants were asked to provide a stool sample and blood sample at various time points during the study, namely just before rice bran consumption, as well as 6 weeks, 12 weeks and 24 weeks after the start of rice bran consumption. Laboratory tests were conducted on these samples. All participants were also instructed to complete a log book, detailing the date and time of rice bran or rice powder intake each day, and the amount consumed. The participants also completed a faecal diary where they documented the frequency of egestion, and the shape and amount of stool egested each day, as well as the occurrence of any abdominal discomfort or pain.
Project description:Rice blast disease is a major threat to rice production worldwide, but the mechanisms underlying rice resistance to the causal agent Magnaporthe oryzae remain elusive. In this whole-genome transcriptome study of rice early defense response to M. oryzae, we applied Affymetrix Rice Genome Genechip to compare the compatible and incompatible rice-M. oryzae interactions in 24 hours post-inoculation. Leaf samples were harvested from three biological replicates of fungal- and mock-inoculated seedlings at 24 hours post-inoculation, from which RNA were extracted and analyzed with Genechip Rice Genome Array.
Project description:This SuperSeries is composed of the following subset Series: GSE16140: Transcriptome analysis of rice (Oryza sativa cv.TW16) in relation to infection with rice tungro spherical virus (RTSV) GSE16141: Transcriptome analysis of rice (Oryza sativa cv. Taichung Native 1) in relation to infection with RTSV Refer to individual Series
Project description:Transcriptome analysis of axillary meristems of rice cultivar Takanari and a near isogenic line that have a chromosomal segment from rice cultivar Habataki.
Project description:Transcriptome analysis is an important approach to associate genotype with phenotype. The content and dynamics of eukaryotic transcriptome are far more complex than previously anticipated. Here we integrated high-throughput RNA-seq and paired-end method to conduct an unprecedentedly deep survey of transcription profile for cultivated rice, one of the oldest domesticated crops species and has since spread worldwide to become one of the major staple foods. Analysis of reads mapping revealed 4,244 previously uncharacterized transcripts, including a mass of protein-coding genes and putative functional non-coding RNA genes. Alignment of junction reads indicated over 42% of rice multiple-exon genes produce two or more distinct splicing isoforms. It’s intriguing that we identified 1,356 putative gene fusion events, indicating the 234 fusion gene produced by trans-splicing vastly increases the complexity of rice transcriptome, together with the pervasive alternative splicing events. Digital gene expression profiling revealed most rice duplicate genes were maintained by the selection constraint on gene dosages, which would increase the genetic robustness of rice to counteract deleterious mutations Keywords: Expression profiling by high throughput sequencing
Project description:To identify genes that co-express with rice cellulose synthase genes involved in rice secondary cell wall formation, transcriptome analyses was performed using rice internodesbefore and after the heading stage, where secondary cell wall formation extensively occur.
Project description:In this study, using a novel dual RNA-seq approach we monitored the global transcriptional changes in real time of Xanthomonas oryzae pv. oryzicola and rice during infection. Our transcriptome maps of Xoc strains infecting rice provide mechanistic insights into the bacterias adaptive responses to the host niche, with modulation of central metabolism being an important signature. The study also uncovers that infected rice responds by substantial alteration of the cell wall, stress and structural proteins.