Project description:Lysosomes are cellular recycling stations and metabolic signaling hubs. Whether lysosome dynamics regulate mammalian brain development is unknown. We found that radial glia cells possess a large number of endolysosomes and that asymmetric inheritance of lysosomes in daughters of radial glia cells can predict fate and cell cycle length. To determine the translation control by the mTORC1, we performed polysome profiling of mRNAs associated with >3 ribosomes for neural progenitor cells that treated with DMSO or Torin1 for 2 hours.
Project description:Lysosomes are cellular recycling stations and metabolic signaling hubs. Whether lysosome dynamics regulate mammalian brain development is unknown. We found that radial glia cells possess a large number of endolysosomes and that asymmetric inheritance of lysosomes in daughters of radial glia cells can predict fate and cell cycle length. To determine the lysosomal regulation of translation initiation by mTORC1/eIF4E axis, we performed RNA immunoprecipitation sequencing (RIP-seq) with antibody against eIF4E in E13.5 neocortex.
Project description:Gene regulation in mammals involves a complex interplay between promoter and distal regulatory elements that function in concert to drive precise spatio-temporal gene expression programs. However, the dynamics of distal gene regulatory elements and its function in transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here we use a combinatorial analysis of genomewide datasets for chromatin accessibility (FAIRE-Seq) and enhancer mark H3K27ac to reveal a highly dynamic nature of chromatin accessibility during neurogenesis that gets restricted to certain genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further reveal that the distal open regions serve as target sites of distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. A prolonged NMDA-driven neural activity results in epigenetic reprogramming at a large number of distal regulatory elements as well as dramatic reorganization of super-enhancers that in turn mediate critical transcriptional responses. Taken together, these findings reveal dynamics of distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate transcriptome underlying neuronal development and function. FAIRE-Seq and H3K27ac profiles for three stages on neuronal differentation viz. neuronal progenitors, day 1 neurons and day 10 neurons, were generated to understand the dynamics of accessible and ehancer chromatin landscape. Along with this we also generated RNASeq and H3K27ac profiles for day 10 neurons upon control and NMDA treatment.
Project description:We followed the polysomal association of maternal and early zygotic transcriptome over the first few hours of embryonic development, prior to and after MBT. We isolated polysome-associated (bound) and non-polysome-associated (unbound) mRNAs using sucrose gradient centrifugation followed by size fractionation. Using next generation sequencing (RNA-seq), we profiled the transcriptome in polysome-bound and unbound fractions. Our analysis revealed distinct dynamics of polysome association of cytoplasmically polyadenylated maternal mRNAs.
Project description:Gene regulation in mammals involves a complex interplay between promoter and distal regulatory elements that function in concert to drive precise spatio-temporal gene expression programs. However, the dynamics of distal gene regulatory elements and its function in transcriptional reprogramming that underlies neurogenesis and neuronal activity remain largely unknown. Here we use a combinatorial analysis of genomewide datasets for chromatin accessibility (FAIRE-Seq) and enhancer mark H3K27ac to reveal a highly dynamic nature of chromatin accessibility during neurogenesis that gets restricted to certain genomic regions as neurons acquire a post-mitotic, terminally differentiated state. We further reveal that the distal open regions serve as target sites of distinct transcription factors that function in a stage-specific manner to contribute to the transcriptional program underlying neuronal commitment and maturation. A prolonged NMDA-driven neural activity results in epigenetic reprogramming at a large number of distal regulatory elements as well as dramatic reorganization of super-enhancers that in turn mediate critical transcriptional responses. Taken together, these findings reveal dynamics of distal regulatory landscape during neurogenesis and uncover novel regulatory elements that function in concert with epigenetic mechanisms and transcription factors to generate transcriptome underlying neuronal development and function.