Project description:Candida lusitaniae is an emerging human opportunistic yeast, which can switch from yeast to pseudohyphae, and one of the rare Candida species capable of sexual reproduction. Its haploid genome and the genetic tools available make it a model of interest to study gene function. This study describes the consequences of DPP3 inactivation on cell morphology and mating, both altered in the dpp3Δ knock-out. Interestingly, reintroducing a wild-type copy of the DPP3 gene in the dpp3Δ mutant failed to restore the wild-type phenotypes. Proteomic analyses showed that about 150 proteins were statistically deregulated in the dpp3Δ mutant, and that most of them did not return to their wild-type level in the reconstituted DPP3 strain. The analysis of the segregation of the dpp3Δ mutation and the phenotypes in the progeny of a cross (between the dpp3Δ knock-out and a wild-type strain) showed that the phenotypes are not linked to dpp3Δ, but to a secondary mutation. Genome sequencing of the dpp3Δ mutant allowed us to identify this secondary mutation.
Project description:To investigate the diversity of gene contents of Candida albicans strain by array-based comparative genomic hybridization (array CGH; aCGH).
Project description:To investigate the diversity of gene contents of Candida albicans strain by array-based comparative genomic hybridization (array CGH; aCGH).
Project description:To investigate the diversity of gene contents of Candida albicans strain by array-based comparative genomic hybridization (array CGH; aCGH).
Project description:Investigation of whole genome gene expression level changes in Candida glabrata CBS138 delta-vph2 mutant, compared to the wild-type strain in SC broth (pH5.0 and pH7.4). VPH2 gene encodes a protein that is the assembly factor of a functional V-ATPase. Loss of Vph2p leads to loss of a functional V-ATPase enzyme complex.
Project description:Candida albicans BWP17 Wild-type strain was grown at 39oC to perform RNA deep sequencing analysis at the study: The chromatin state of Candida albicans pericentromeric repeats bears features of both euchromatin and heterochromatin. The aim of the study is to analyse differential gene expression at 30 oC and 39 oC of centromere proximal genes.
Project description:We used Candida albicans lab strain SC5314 to obtain tunicamycin adaptors. We did whole genome sequencing of the adaptors and the parent as well.
Project description:Differential expression between monosoic derivative and parental strain of Candida albicans. The important human pathogen Candida albicans possesses an unusual form of gene regulation, in which the copy number of an entire specific chromosome or a large portion of a specific chromosome changes in response to a specific adverse environment, thus, assuring survival. In the absence of the adverse environment, the altered portion of the genome can be restored to its normal condition. One major question is how C. albicans copes with gene imbalance arising by transitory aneuploid states. Here, we compared transcriptomes from two copies of chromosome 5 (Ch5) in a normal diploid strain 3153A and from a single copy of Ch5 in representative derivative Sor55. Statistical analysis revealed that at least 40% of transcripts from the monosomic Ch5 are fully compensated to a disomic level, thus, indicating the existence of a genome-wide mechanism maintaining cell homeostasis. However, a minor portion of transcripts diminished twofold in accordance with what would be expected for Ch5 monosomy. Another minor portion of transcripts, unexpectedly, increased up to twofold and higher then the disomic level, demonstrating indirect control by monosomy. We suggest that C. albicans unusual regulation of gene expression by the loss and gain of entire chromosomes is coupled with widespread compensation of gene dosage at the transcriptional level.