Project description:Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated microbial community profiles as well as directly assayed nitrogen cycling genes that encode the enzymes responsible for overall nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms responsible for production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that elevated rates of nitrous oxide production and consumption are the result of changes in community structure, not simply changes in microbial activity.
Project description:Transcriptional profiling of marine ammonia oxidizing archaea Nitrosopumilus maritimus cells comparing exponential phase control cells with cells under 24 hours starvation and with cells under recovery after 24 hours starvation. Goal was to determine the effects of global transcriptional responses of N. maritimus cells under ammonia starvation and recovery conditions.
Project description:Ammonia-oxidizing archaea (AOA) play a significant role in global nitrogen and carbon cycling. AOA can survive under fluctuating environmental conditions by modulating gene expression. Little is known about how AOA regulate gene expression to adapt environmental stress. Here, we report a chromatin-driven mechanism of transcription in Nitrososphaera Viennensis (EN76) to adapt to temperature stress. Using computational and biochemical assays, we found EN76 contains an archaeasome structure. We found that several residues, including G20, K57, and T58 of histone, are important to form archaea chromatin structures. In vitro transcription assays revealed that AOA chromatin efficiently controls gene expression, similar to eukaryote chromatin. Furthermore, we identified AOA histone acetylation, which activates gene expression. Moreover, by integrating chromatin-based gene expression analyses, we revealed that AOA differentially regulate gene expression in response to temperature stress by altering archaeasome occupancy. Our study provides unprecedented documentation that AOA fine-tunes gene expression through a chromatin-driven epigenetic mechanism.
Project description:Ammonia-oxidizing archaea (AOA) play a significant role in global nitrogen and carbon cycling. AOA can survive under fluctuating environmental conditions by modulating gene expression. Little is known about how AOA regulate gene expression to adapt environmental stress. Here, we report a chromatin-driven mechanism of transcription in Nitrososphaera Viennensis (EN76) to adapt to temperature stress. Using computational and biochemical assays, we found EN76 contains an archaeasome structure. We found that several residues, including G20, K57, and T58 of histone, are important to form archaea chromatin structures. In vitro transcription assays revealed that AOA chromatin efficiently controls gene expression, similar to eukaryote chromatin. Furthermore, we identified AOA histone acetylation, which activates gene expression. Moreover, by integrating chromatin-based gene expression analyses, we revealed that AOA differentially regulate gene expression in response to temperature stress by altering archaeasome occupancy. Our study provides unprecedented documentation that AOA fine-tunes gene expression through a chromatin-driven epigenetic mechanism.
2024-06-30 | GSE249031 | GEO
Project description:Inhibition of Ammonia-oxidizing Microorganisms in Constructed Wetlands by Nitrification Inhibitors
| PRJNA719640 | ENA
Project description:The key factors affect ammonia-oxidizing microorganisms community in constructed wetlands