Project description:Endothelial cell (EC) sensing of fluid shear stress regulates atherosclerosis, a disease of arteries that causes heart attack and stroke. Atherosclerosis preferentially develops at regions of arteries exposed to low oscillatory shear stress (LOSS), whereas high shear regions are protected. We show using inducible EC-specific genetic deletion in hyperlipidaemic mice that the Notch ligands JAG1 and DLL4 have opposing roles in atherosclerosis. While endothelial Jag1 promoted atherosclerosis at sites of LOSS, endothelial Dll4 was atheroprotective. Analysis of porcine and murine arteries and cultured human coronary artery EC exposed to experimental flow revealed that JAG1 and its receptor NOTCH4 are strongly upregulated by LOSS. Functional studies in cultured cells and in mice with EC-specific deletion of Jag1 show that JAG1-NOTCH4 signalling drives vascular dysfunction by repressing endothelial repair. These data demonstrate a fundamental role for JAG1-NOTCH4 in sensing LOSS during disease, and suggest therapeutic targeting of this pathway to treat atherosclerosis.
Project description:Endothelial cell (EC) sensing of fluid shear stress regulates atherosclerosis, a disease of arteries that causes heart attack and stroke. Atherosclerosis preferentially develops at regions of arteries exposed to low oscillatory shear stress (LOSS), whereas high shear regions are protected. We show using inducible EC-specific genetic deletion in hyperlipidaemic mice that the Notch ligands JAG1 and DLL4 have opposing roles in atherosclerosis. While endothelial Jag1 promoted atherosclerosis at sites of LOSS, endothelial Dll4 was atheroprotective. Analysis of porcine and murine arteries and cultured human coronary artery EC exposed to experimental flow revealed that JAG1 and its receptor NOTCH4 are strongly upregulated by LOSS. Functional studies in cultured cells and in mice with EC-specific deletion of Jag1 show that JAG1-NOTCH4 signalling drives vascular dysfunction by repressing endothelial repair. These data demonstrate a fundamental role for JAG1-NOTCH4 in sensing LOSS during disease, and suggest therapeutic targeting of this pathway to treat atherosclerosis.
Project description:Coronavirus disease 2019 (Covid19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is associated with lung inflammation and respiratory failure. In a prospective multi-country cohort of Covid19 patients, we found that increased Notch4 expression on circulating Treg cells was associated with increased disease severity, predicted mortality, and declined upon recovery. Deletion of Notch4 in Treg cells or therapy with anti-Notch4 antibodies in conventional and humanized mice suppressed the dysregulated innate immune response and rescued disease morbidity and mortality induced by a synthetic analogue of viral RNA or by the influenza H1N1 virus in an amphiregulin-dependent manner. Notably, amphiregulin production declined in Covid19 subjects as a function of disease severity and Notch4 expression. These results identify Notch4 as an immune regulatory switch that licenses virus-induced lung inflammation by altering Treg cell-mediated tissue repair. They also suggest Notch4 as a therapeutic target in Covid19 and other respiratory viral infections.
Project description:Aim: To determine the role of NOTCH during the response-to-injury and subsequent chronic inflammatory process of the arterial wall underlying atherosclerosis. Methods and results: We have generated an endothelial-specific RBPJK depleted mice using the Cdh5 cadherin promoter (ApoE-/-;RBPJflox/flox;Cdh5- CreERT). Endothelial-specific deletion of the Notch effector RBPJK or systemic deletion of the Notch1 receptor in athero-susceptible ApoE-/- mice fed a HC diet for 6 weeks resulted in reduced atherosclerosis in the aortic arch and sinus. Intravital microscopy revealed decreased leukocyte rolling on the endothelium of ApoE-/-;RBPJflox/flox;Cdh5- CreERT, that correlated with the lesser presence of leukocyts and macrophages in the vascular wall. Consistent with this, transcriptome analysis revealed that proinflammatory and endothelial activation pathways were downregulated in atherosclerotic tissue of RBPJk-mutant mice.. Jagged1 signaling upregulation in endothelial cells promotes the physical interaction and nuclear translocation of the intracellular domain of the Notch1 receptor (N1ICD) with NF-kB,. This N1ICD and NF-kB interaction is required for reciprocal transactivation of target genes including vascular cell adhesion molecule-1 (Vcam1). Conclusions: Notch signaling pathway inactivation decreases leukocyte rolling, thereby preventing endothelial dysfunction and vascular inflammation. Thus attenuating Notch signaling may constitute a useful therapeutic strategy for atherosclerosis. Key words: atherosclerosis, endothelium, signaling pathways, Notch, NF-kB, transcriptional regulation
Project description:Elucidating the mechanisms that sustain asthmatic inflammation is critical for precision therapies. We found that IL-6 and STAT3-dependent upregulation of Notch4 on Iung tissue regulatory T (Treg) cells is necessary for allergens and particulate matter pollutants to promote airway inflammation. Notch4 subverted Treg cells into TH2 and TH17 effector T (Teff) cells by Wnt and Hippo pathway-dependent mechanisms. Wnt activation induced GDF15 expression in Treg cells, which activated group 2 innate lymphoid cells (ILC2) to provide a feed-forward mechanism for aggravated inflammation. Notch4, Wnt and Hippo were upregulated on circulating Treg cells of asthmatics as a function of disease severity, in association with reduced Treg cell-mediated suppression. Our studies thus identify Notch4-mediated immune tolerance subversion as a fundamental mechanism that licenses tissue inflammation in asthma.
Project description:Background: JAG-1 is a ligand of Notch signaling and can regulate cell differentiation and proliferation in cancers. Recent studies indicated that JAG1 is a gene associated with cancer progression. Therefore, we investigated the role of JAG1 in lung cancer progression. Methods: The expression of JAG1 was manipulated by overexpression or RNA silencing in several human lung cell lines. The effect of JAG1 on tumorigenesis and invasion was assessed by the cell anchorage-independent growth, cell proliferation, cell migration and invasion assays in vitro as well as metastasis in vivo. The potential downstream genes of JAG1 were identified by oligonucleotide microarrays and quantitative reverse transcription¡Vpolymerase chain reaction (RT-PCR). We further measured JAG1 expression in lung cancer specimens by RT-PCR. Correlation between JAG1 expression and overall survival of lung cancer patients was determined by using the log-rank test and multivariable Cox proportional hazards regression analysis. All statistical tests were two-sided. Results: JAG1 enhanced anchorage-independent growth, cell migration, invasion in the lower invasive cells, CL1-0. JAG1 also increased the capability of migration and invasion in the other two lung cancer cell lines (A549 and NCI-H226). The silencing of JAG1 inhibited migration and invasion activities of the higher invasive cells, CL1-5, by siRNA technology. The invasion-promoting activity of JAG1 was also demonstrated in vivo by using a mouse metastasis model. By microarray analysis, we found that the expression of heat shock 70kDa protein 2 (HSPA2) was activated by JAG1 overexpression and eliminated by JAG1 silencing. Moreover, lung cancer patients with high JAG1 expressing tumors had shorter overall survival than those with low-expressing tumors. Conclusion: JAG1 might be an oncogene which promotes colonogenesis and metastasis, and high JAG1 expression is associated with shorten survival in lung cancer. In this investigation, we used a lung cancer invasion cell model to identify the genes involved in cancer progression. JAG1 is a potential oncogene whose expression is correlated to the survival of patients with breast, prostate and liver cancers. However, the role of JAG1 in lung caner progression has not been reported, particularly in metastasis. Here, JAG1 was ectopically expressed in lower invasive lung cancer cell line its impact on colonogenesis, migration and invasiveness was assessed. The underlying mechanism was explored by JAG1-expressed transfectants and microarrays and the clinical relevance was evaluated by quantitative RT-PCR.
Project description:Microarray gene expression experiments to identify differentially expressed genes and pathways in Jag1 conditional/null livers reveal up-regulation of many genes related to fibrosis and ECM interactions. 3 Jag1 conditional/null mutant mice versus 3 littermate wildtype control mice.