Project description:Analysis of treatment at gene expression level in aged mice. Results provide important information of the response of drug modifying NAD metabolism which has been implicated in anti-aging effect of calorie restriction in aging process. Total RNA obtained from skeletal muscles and brain (cortex) subjected to calorie restriction or β-lapachone treatment compared to untreated control.
Project description:Calorie restriction is a major intervention consistently demonstrated to retard aging and delay age-associated diseases. A novel micronutrient blend, a putative calorie restriction mimetic, was developed based on a screening tool we previously described. Whole transcriptomic analysis was examined in brain cortex, skeletal muscle and heart in three groups of mice: old controls (30 months), old + calorie restriction and old + novel micronutrient blend. The micronutrient blend elicited transcriptomic changes in a manner similar to those in the calorie-restricted group and unique from those in the control group. Subgroup analysis revealed that nuclear hormone receptor, proteasome complex and angiotensinogen genes, all of which are known to be directly related to the aging process, were the most affected by the micronutrient blend and by calorie restriction. Thus, these three genes may be considered master regulators of the favorable effects of calorie restriction and of the micronutrient blend. Based on the calorie restriction mimetic effects on transcriptomics, it was hypothesized that the micronutrient blend would promotes longevity and vitality. To test this hypothesis, a functional analysis in C. Elegans was used to examine the effects of the micronutrient blend on longevity and biomarkers of vitality. Results indicate that feeding C. Elegans the micronutrient blend increased longevity as well as vitality. Further studies are required to confirm that the calorie restriction mimicking benefits described here are elicited by the micronutrient blend in humans.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.