Project description:In this study, we demonstrated that baseline SOX11 expression was significantly higher in dermal fibroblasts (DFs) isolated from patients with SSc than that in controls, and increased in response to TGF-b. We then showed that SOX11 is involved in the expression of periostin and some periostin-dependent fibrotic factors identified in lung fibroblasts previously. Moreover, we identified some fibrotic factors induced by SOX11 in DNA microarrays combining TGF-b induction and SOX11 knockdown. Finally, we showed that genetic deletion of SOX11 in Postn positive fibroblast cells protects from bleomycin (BLM)-induced skin fibrosis. Altogether, our data indicate that SOX11 and periostin forms a vicious circle and that TGF-b activates this circle specifically in SSc dermal fibroblasts.
Project description:Systemic sclerosis (SSc) is a chronic, heterogenous multisystem connective tissue disease characterized by vascular injury, autoimmunity, and organ fibrosis. Epigenetic modification is thought to be important in the onset and progression of SSc. SOX (SRY-related HMG box) 11 is a transcription factor playing several important roles in organ development in embryos. We have previously shown that dermal fibroblasts derived from SSc patients showed constitutive, high expression of SOX11 and a positive loop formed by SOX11 and periostin in fibroblasts upregulates the TGF- signals, leading to skin fibrosis. However, the mechanism of the aberrant high expression of SOX11 remain unknown in the pathogenesis of SSc. In this study, we found that SOX11 high expression is associated with presence of activating histone marks (H3K27Ac) in SSc dermal fibroblasts. In contrast, normal fibroblasts express low level of SOX11 associated with silencing histone marks H3K27me3. Moreover, using the miRNA microarray method, we identified some miRNAs downregulated in SSc dermal fibroblasts and target SOX11 and overexpression of these miRNAs significantly repressed the expression of SOX11 in SSc dermal fibroblasts. Our findings, taken together, show that epigenetic activation of SOX11 in systemic sclerosis fibroblasts upregulates the SOX11 expression, leading to skin fibrosis.
Project description:In this study, two gene expression analyses were performed. The first analysis, comparing the DEGs between fibrotic and non-fibrotic tissue, revealed genes which may play a role in testicular fibrosis, including VCAM1. In addition, this analysis revealed a pertinent role for genes involved in the TGF-β1 pathway. Secondly, a differential gene expression analysis between KS and TA samples was performed. GO analysis revealed genes involved in the chronic inflammatory responses. When comparing the X-linked genes of the first analysis (fibrotic versus non-fibrotic) with those of the second analysis (KS versus TA), X-linked fibrotic genes involved in KS revealed, i.e. MXRA5, DCX and VCX3B. Their potential role in KS-related testicular fibrosis needs further study.
Project description:The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL). We have recently demonstrated SOX11 tumorigenic potential in vivo by showing a significant reduction on tumor growth of SOX11-knockdown MCL cells in xenograft experiments, confirming the clinical observations that SOX11 may play an important role in the aggressive behavior of MCL (Vegliante et al., 2013). However, the specific mechanisms regulated by SOX11 that promote the oncogenic and rapid tumor growth of aggressive MCL still remain to be elucidated. To further characterize the potential oncogenic mechanisms regulated by SOX11 in MCL, we have analyzed the GEP derived from the xenograft SOX11-positive and knockdown xenograft derived tumors. Differential gene expression between SOX11-positive Z138 and SOX11-negative Z138 MCL cell lines xenotransplanted in SCID mices derived tumors.
Project description:Background/Aims: There is a major unmet need to assess prognostic impact of anti-fibrotics in clinical trials due to the slow rate of liver fibrosis progression. We aimed to develop a surrogate biomarker to predict future fibrosis progression. Methods: A Fibrosis Progression Signature (FPS) was defined to predict fibrosis progression within 5 years in HCV and NAFLD patients with no to minimal fibrosis at baseline (n=421), and validated in an independent NAFLD cohort (n=78). The FPS was used to assess response to 13 candidate anti-fibrotics in organotypic ex vivo cultures of clinical fibrotic liver tissues (n=78), and cenicriviroc in NASH patients enrolled in a clinical trial (n=19, NCT02217475). A serum-protein-based surrogate FPS (FPSec) was developed and technically evaluated in a liver disease patient cohort (n=79). Results: A 20-gene FPS was defined and validated in an independent NAFLD cohort (aOR=10.93, AUROC=0.86). Among computationally inferred fibrosis-driving FPS genes, BCL2 was confirmed as a potential pharmacological target using clinical liver tissues. Systematic ex vivo evaluation of 13 candidate anti-fibrotics identified rational combination therapies based on epigallocatechin gallate, some of which were validated for enhanced anti-fibrotic effect in ex vivo culture of clinical liver tissues. In NASH patients treated with cenicriviroc, FPS modulation was associated with 1-year fibrosis improvement accompanied by suppression of the E2F pathway. Induction of PPARalpha pathway was absent in patients without fibrosis improvement, suggesting benefit of combining PPARalpha agonism to improve anti-fibrotic efficacy of cenicriviroc. A 7-protein FPSec panel showed concordant prognostic prediction with FPS. Conclusion: FPS predicts long-term fibrosis progression in an etiology-agnostic manner, which can inform anti-fibrotic drug development.
Project description:The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL). We have recently demonstrated SOX11 tumorigenic potential in vivo by showing a significant reduction on tumor growth of SOX11-knockdown MCL cells in xenograft experiments, confirming the clinical observations that SOX11 may play an important role in the aggressive behavior of MCL (Vegliante et al., 2013). However, the specific mechanisms regulated by SOX11 that promote the oncogenic and rapid tumor growth of aggressive MCL still remain to be elucidated. To further characterize the potential oncogenic mechanisms regulated by SOX11 in MCL, we have analyzed the GEP derived from the xenograft SOX11-positive and knockdown xenograft derived tumors. Differential gene expression between SOX11-positive Z138 and SOX11-negative Z138 MCL cell lines xenotransplanted in SCID mices derived tumors. To determine the transcriptional programs regulated by SOX11 we first generated a MCL cellular model with reduced SOX11 protein levels by infecting MCL cell lines with lentiviral particles carrying shRNA plasmids specifically targeting SOX11 (shSOX11.1 and shSOX11.3). Next, CB17-severe combined immunodeficient (CB17-SCID) mice (Charles River Laboratory, Wilmington, MA) were subcutaneously inoculated into their lower dorsum with Z138 shSOX11.1, shSOX11.3, shControl in Matrigel basement membrane matrix and compared the GEP of SOX11-positive and SOX11-negative MCL xenotransplant derived tumors using the Affymetrix U133+2.0 microarrays.
Project description:Fibrosis, the replacement of healthy tissue with collagen-rich matrix, can occur following injury in almost every organ. Mouse lungs follow stereotyped sequences of fibrogenesis-to-resolution after bleomycin injury, and we reasoned that profiling post-injury histological progression could uncover pro- vs. anti-fibrotic features with functional value for human fibrosis. We mapped spatiotemporally-resolved transformations in lung extracellular matrix (ECM) architecture to spatially-resolved, multi-omic data. First, we charted stepwise trajectories of matrix aberration vs. resolution using unsupervised machine learning, denoting a reversible transition in uniform-to-disordered histological architecture. Single-cell sequencing along these trajectories identified temporally-enriched “ECM-secreting” (Csmd1+) and “pro-resolving” (Cd248+) fibroblasts, for which Visium inferred divergent histological signatures and spatial-transcriptional “neighborhoods”. Critically, pro-resolving fibroblast instillation helped ameliorate fibrosis in vivo. Further, fibroblast neighborhood-associated moieties, Serpine2 and Pi16, functionally modulated human lung fibrosis ex vivo. Spatial phenotyping of idiopathic pulmonary fibrosis further uncovered analogous fibroblast subtypes and neighborhoods in human disease. Collectively, these findings establish an atlas of pro-/anti-fibrotic factors underlying lung matrix architecture and implicate fibroblast-centered moieties in modulating fibrotic progression vs. resolution.
Project description:We used the scRNA-seq to characterize disease-related heterogeneity within cell populations of macrophages/monocytes in the bronchoalveolar lavage fluid from West Highland white terriers either healthy or affected with canine idioapthic pulmonary fibrosis. The disease is still not well understood, occurs in old West Highland white terriers and results from deposition of fibrotic tissue in the lung parenchyma causing respiratory failure.
Project description:Fibrosis, the replacement of healthy tissue with collagen-rich matrix, can occur following injury in almost every organ. Mouse lungs follow stereotyped sequences of fibrogenesis-to-resolution after bleomycin injury, and we reasoned that profiling post-injury histological progression could uncover pro- vs. anti-fibrotic features with functional value for human fibrosis. We mapped spatiotemporally-resolved transformations in lung extracellular matrix (ECM) architecture to spatially-resolved, multi-omic data. First, we charted stepwise trajectories of matrix aberration vs. resolution using unsupervised machine learning, denoting a reversible transition in uniform-to-disordered histological architecture. Single-cell sequencing along these trajectories identified temporally-enriched “ECM-secreting” (Csmd1+) and “pro-resolving” (Cd248+) fibroblasts, for which Visium inferred divergent histological signatures and spatial-transcriptional “neighborhoods”. Critically, pro-resolving fibroblast instillation helped ameliorate fibrosis in vivo. Further, fibroblast neighborhood-associated moieties, Serpine2 and Pi16, functionally modulated human lung fibrosis ex vivo. Spatial phenotyping of idiopathic pulmonary fibrosis further uncovered analogous fibroblast subtypes and neighborhoods in human disease. Collectively, these findings establish an atlas of pro-/anti-fibrotic factors underlying lung matrix architecture and implicate fibroblast-centered moieties in modulating fibrotic progression vs. resolution.
Project description:Fibrosis, the replacement of healthy tissue with collagen-rich matrix, can occur following injury in almost every organ. Mouse lungs follow stereotyped sequences of fibrogenesis-to-resolution after bleomycin injury, and we reasoned that profiling post-injury histological progression could uncover pro- vs. anti-fibrotic features with functional value for human fibrosis. We mapped spatiotemporally-resolved transformations in lung extracellular matrix (ECM) architecture to spatially-resolved, multi-omic data. First, we charted stepwise trajectories of matrix aberration vs. resolution using unsupervised machine learning, denoting a reversible transition in uniform-to-disordered histological architecture. Single-cell sequencing along these trajectories identified temporally-enriched “ECM-secreting” (Csmd1+) and “pro-resolving” (Cd248+) fibroblasts, for which Visium inferred divergent histological signatures and spatial-transcriptional “neighborhoods”. Critically, pro-resolving fibroblast instillation helped ameliorate fibrosis in vivo. Further, fibroblast neighborhood-associated moieties, Serpine2 and Pi16, functionally modulated human lung fibrosis ex vivo. Spatial phenotyping of idiopathic pulmonary fibrosis further uncovered analogous fibroblast subtypes and neighborhoods in human disease. Collectively, these findings establish an atlas of pro-/anti-fibrotic factors underlying lung matrix architecture and implicate fibroblast-centered moieties in modulating fibrotic progression vs. resolution.