Project description:Comparative genomic analysis of T. cruzi CLB vs Trypanosoma rangeli (strains SC, Choachí, C23, H14, R1625 and PIT10) and Trypanosoma conorhini
2023-04-11 | GSE229354 | GEO
Project description:Giardia lamblia genome-wide library for yeast surface display
Project description:Trypanosoma cruzi is a protozoan parasite and the etiologic agent of Chagas disease, an important public health problem in Latin America. T. cruzi is diploid, almost exclusively asexual, and displays an extraordinarily diverse population structure both genetically and phenotypically. Yet, to date the genotypic diversity of T. cruzi and its relationship, if any, to biological diversity have not been studied at the whole genome level. In this study, we used whole genome oligonucleotide tiling arrays to compare gene content in biologically disparate T. cruzi strains by comparative genomic hybridization (CGH). We observed that T. cruzi strains display widespread and focal copy number variations (CNV) and a substantially greater level of diversity than can be adequately defined by the current genetic typing methods. As expected, CNV were particularly frequent in gene family-rich regions containing mucins and trans-sialidases but were also evident in core genes. Gene groups that showed little variation in copy numbers among the strains tested included those encoding protein kinases and ribosomal proteins, suggesting these loci were less permissive to CNV. Moreover, frequent variation in chromosome copy numbers were observed, and chromosome-specific CNV signatures were shared by genetically divergent T. cruzi strains, suggesting a greater degree of chromosome exchange than previously thought.
Project description:Genome wide DNA methylation profiling of umbilical cord blood DNA samples using the Illumina Infinium MethylationEPIC array (approximately 850,000 CpGs). Samples included cord blood samples from infants born to women with (exposed) and without (control) infection with Trypanosoma cruzi parasites, to test for a potential epigenetic effect of in utero exposure to maternal infection.
Project description:Trypanosoma cruzi is a protozoan parasite and the etiologic agent of Chagas disease, an important public health problem in Latin America. T. cruzi is diploid, almost exclusively asexual, and displays an extraordinarily diverse population structure both genetically and phenotypically. Yet, to date the genotypic diversity of T. cruzi and its relationship, if any, to biological diversity have not been studied at the whole genome level. In this study, we used whole genome oligonucleotide tiling arrays to compare gene content in biologically disparate T. cruzi strains by comparative genomic hybridization (CGH). We observed that T. cruzi strains display widespread and focal copy number variations (CNV) and a substantially greater level of diversity than can be adequately defined by the current genetic typing methods. As expected, CNV were particularly frequent in gene family-rich regions containing mucins and trans-sialidases but were also evident in core genes. Gene groups that showed little variation in copy numbers among the strains tested included those encoding protein kinases and ribosomal proteins, suggesting these loci were less permissive to CNV. Moreover, frequent variation in chromosome copy numbers were observed, and chromosome-specific CNV signatures were shared by genetically divergent T. cruzi strains, suggesting a greater degree of chromosome exchange than previously thought. Genomic DNA samples from 16 T. cruzi strains were compared to genomic DNA from the CL Brener strain by competitive hybridizations on whole genome oligonucleotide tiling arrays.
Project description:To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites Trypanosoma cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS), and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen Leishmania mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. Trypanosoma cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines. Keywords: Bone marrow macrophage response to intracellular parasites and cytokines
2010-04-13 | GSE20087 | GEO
Project description:Trypanosoma cruzi genome-wide locus sequence typing (GLST)