Project description:To investigate the function PRMT3 and IGF2BP1 in HCC, we established PLC-8024 cell lines in which each target gene has been knocked down by shRNA.
Project description:To identify the target mRNAs of the m6A reader protein YTHDF2 in mouse hippocampus, we carired out anti YTHDF2 RNA Immunoprecipitation (RIP) followed by RNA-sequencencing. Using EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore), RNA from P40 wild type mouse hippocampus was pulled down by rabbit polyclonal anti-YTHDF2 (proteintech) and then sequenced on Illumina Novaseq 6000. The filtered reads were aligned to the mouse reference genome (GRCm38) using BWA mem (v 0.7.12).Then the MACS2 (version 2.1.0) peak calling software was used to identify regions of IP enrichment over background, followed by the motif detected by Homer (Heinz et al., 2010). Peak related genes are then confirmed by PeakAnnotator. Different peak analysis was based on the fold enrichment of peaks of different experiments. A peak was determined as different peak when the odds ratio between two groups was more than 2. Using the same method, genes associated with different peaks were identified. Finally, Biological replicates of anti-YTHDF2 RIP-Seq identified 408 mRNAs transcripts. This study provides gene lists which shows mRNA binding with YTHDF2 in mouse hippocampus.
Project description:To identify the target mRNAs of the m6A reader proteins YTHDF1 and YTHDF2, we carried out anti-YTHDF1 and anti-YTHDF2 RNA Immunoprecipitation (RIP) followed by RNA-sequencing. Using EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore), RNA from E12.5 wild-type mouse cortices and P0 wild-type mouse retinas was pulled down by rabbit polyclonal anti-YTHDF1 (proteintech) and rabbit polyclonal anti-YTHDF2 (proteintech), and then sequenced on Illumina HiSeq3000 platform. The filtered reads were mapped to the mouse reference genome (GRCm38) using STAR v2.5 with default parameters. The resulting bam files were fed to the HTSeq tool to count the number of RNA-seq reads, which was further normalized to calculate FPKM. To determine which gene is enriched, we computed the FPKM from RIP elute to input, and any fold change greater than 2 was considered enriched. From the embryonic cortex, we identified 986 and 1860 mRNAs by anti-YTHDF1 and anti-YTHDF2 RIP-seq, respectively. Anti-YTHDF1 and anti-YTHDF2 RIP-seq in mouse retina identified 2969 and 1638 mRNAs, respectively. This study provides the gene lists which show mRNAs binding with YTHDF1 and YTHDF2 in the mouse cortex and retina.
Project description:We identified the mRNA targets of the insulin-like growth factor-2 (IGF2) mRNA-binding proteins 1, 2, and 3 (IGF2BP1/2/3) by RNA immunoprecipitation and sequencing (RIP-seq). HEK293T cells transfected with Flag-tagged IGF2BP1/2/3 plasmids were expanded and UV-crosslinked before harvest. We performed RIP of individual IGF2BP using anti-Flag antibody from nuclear extractions, and identified the associated mRNAs by next generation sequencing. More than 5000 transcripts, including protein coding and non-coding transcripts, were identified from each RIP-seq sample.
Project description:To identify the target mRNAs of the m6A reader protein YTHDF2, we carired out anti YTHDF2 RNA Immunoprecipitation (RIP) followed by RNA-sequencencing. Using EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore), RNA from P0 wild type mouse retinas was pulled down by rabbit polyclonal anti-YTHDF2 (proteintech) and then sequenced on Illumina HiSeq3000 platform. The filtered reads were mapped to the mouse reference genome (GRCm38) using STAR v2.5 with default parameters. The resulting bam files were fed to HTSeq tool to count the number of RNA-seq reads, which was further normalized to calculate FPKM. To determine which gene is enriched, we computed the FPKM from RIP elute to input and any fold change greater than 2 was considered enriched. Finally, Biological replicates of anti-YTHDF2 RIP-Seq identified 1639 transcripts. This study provides a gene list which shows mRNA binding with YTHDF2 in mouse retina.
Project description:To investigate functional transcripts in metastatic HCC, we performed high-throughput RNA sequencing (RNA-seq) of tumors from 3 metastatic HCC and 3 non-metastatic HCC. And we performed RIP-seq human PLC/PRF/5 cells to investigate the HNRNPD binding transcripts. To investigate function of circLARP1B on AMPK pathway, we performed high-throughput RNA sequencing (RNA-seq) of WT (DMSO or Compound C) and circLARP1B-Def (DMSO) PLC/PRF/5 cells.
Project description:To identify the target mRNAs of the m6A reader protein YTHDF1 and YTHDF2, we carired out anti YTHDF1 and anti YTHDF2 RNA Immunoprecipitation (RIP) followed by RNA-sequencencing. Using EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit (Millipore), RNA from P6-P8 wild type mouse cerebellum was pulled down by rabbit polyclonal anti-YTHDF1 (proteintech) or polyclonal anti-YTHDF2 (proteintech) and then sequenced on Illumina HiSeq3000 platform. The filtered reads were mapped to the mouse reference genome (GRCm38) using STAR v2.5 with default parameters. The resulting bam files were fed to HTSeq tool to count the number of RNA-seq reads, which was further normalized to calculate FPKM. To determine which gene is enriched, we computed the FPKM from RIP elute to input and any fold change greater than 2 was considered enriched. Finally, Biological replicates of anti-YTHDF1 RIP-Seq and anti-YTHDF2 RIP-Seq identified 506 and 596 mRNAs transcripts, respectively. This study provides gene lists which shows mRNA binding with YTHDF1 and YTHDF2 in mouse cerebellum.