Project description:Understanding how transcriptional programs help to coordinate cell growth and division is an important unresolved problem. Here we report that the nutrient- and stress-regulated transcription factor Sfp1 is rate-limiting for expression of a large suite of genes involved in yeast cell growth, including ribosomal protein, ribosome biogenesis, and snoRNA genes. Remarkably, the spectrum of Sfp1 transcription effects is concordant with a combination of chromatin immunoprecipitation and chromatin endogenous cleavage binding analyses, which together provide evidence for two distinct modes of Sfp1 promoter binding, one requiring a co-factor and the other a specific DNA-recognition motif. In addition to growth-related genes, Sfp1 binds to and regulates the promoters of key G1/S regulon genes and that of MRS6, whose product regulates Sfp1 nuclear localization. Our findings suggest that Sfp1 acts as a master regulator of cell growth and cell size by coordinating the expression of genes implicated in mass accumulation and cell division.
Project description:Transfer RNA (tRNA) modifications play a crucial role in maintaining translational fidelity and efficiency, and they may function as regulatory elements in stress response and virulence. Despite their pivotal roles, a comprehensive mapping of tRNA modifications and their associated synthesis genes is still limited, with a predominant focus on free-living bacteria. In this study, we employed a multidisciplinary approach, incorporating comparative genomics, mass spectrometry, and next-generation sequencing, to predict the set of tRNA modification genes responsible for tRNA maturation in two intracellular pathogens—Bartonella henselae Houston I and Bartonella quintana Toulouse, which are causative agents of cat-scratch disease and trench fever, respectively. This analysis presented challenges, particularly because of host RNA contamination, which served as a potential source of error. However, our approach predicted 26 genes responsible for synthesizing 23 distinct tRNA modifications in B. henselae and 22 genes associated with 23 modifications in B. quintana. Notably, akin to other intracellular and symbiotic bacteria, both Bartonella species have undergone substantial reductions in tRNA modification genes, mostly by simplifying the hypermodifications present at positions 34 and 37. B. quintana exhibited the additional loss of four modifications and these were linked to examples of gene decay, providing snapshots of reductive evolution.
Project description:RBFOX2 controls the splicing of a large number of transcripts implicated in cell differentiation and development. Parsing RNA-binding protein datasets, we uncover that RBFOX2 can interact with hnRNPC, hnRNPM and SRSF1 to regulate splicing of a broad range of splicing events using different sequence motifs and binding modes. Using immunoprecipitation, specific RBP knockdown, RNA-seq and splice-sensitive PCR, we show that RBFOX2 can target splice sites using three binding configurations: single, multiple or secondary modes. In the single binding mode RBFOX2 is recruited to its target splice sites through a single canonical binding motif, while in the multiple binding mode RBFOX2 binding sites include the adjacent binding of at least one other RNA binding protein partner. Finally, in the secondary binding mode RBFOX2 likely does not bind the RNA directly but is recruited to splice sites lacking its canonical binding motif through the binding of one of its protein partners. These dynamic modes bind distinct sets of transcripts at different positions and distances relative to alternative splice sites explaining the heterogeneity of RBFOX2 targets and splicing outcomes.
Project description:The greater duckweed (Spirodela polyrhiza 7498) exhibits trophic diversity (photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic growth) depending on the availability of exogenous organic carbon sources and light. Here, we show that the ability to transition between various trophic growth conditions is an advantageous trait, providing great phenotypic plasticity and metabolic flexibility in S. polyrhiza 7498. By comparing S. polyrhiza 7498 growth characteristics, metabolic acclimation, and cellular ultrastructure across these trophic modes, we show that mixotrophy decreases photosynthetic performance and relieves the CO2 limitation of photosynthesis by enhancing the CO2 supply through the active respiration pathway. Proteomic and metabolomic analyses corroborated that S. polyrhiza 7498 increases its intracellular CO2 and decreases reactive oxygen species undermixotrophic and heterotrophic conditions, which substantially suppressed the wasteful photorespiration and oxidative-damage pathways. As a consequence, mixotrophy resulted in a higher biomass yield than the sum of photoautotrophy and heterotrophy.Our work provides a basis for using trophic transitions in S. polyrhiza 7498 for the enhanced accumulation of value-added products.