Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.
Project description:Analysis of breast cancer survivors' gut microbiota after lifestyle intervention, during the COVID-19 lockdown, by 16S sequencing of fecal samples.
Project description:The gut microbiota plays an important role in host health. Microbiota dysbiosis has been implicated in the global epidemic of Metabolic Syndrome (MetS) and could impair host metabolism by noxious metabolites. It has been well established that the gut microbiota is shaped by host immune factors. However, the effect of T cells on the gut microbiota is yet unknown. Here, we performed a metagenomic whole-genome shotgun sequencing (mWGS) study of the microbiota of TCRb-/- mice, which lack alpha/beta T cells.
Project description:Gut microbiota were assessed in 540 colonoscopy-screened adults by 16S rRNA gene sequencing of stool samples. Investigators compared gut microbiota diversity, overall composition, and normalized taxon abundance among these groups.
Project description:Increasing evidence indicates that gut microbiota plays an important role in cancer progression. We have employed RNA-seq or microarray for genome including mRNA, microRNA or circRNA profiling in an gut microbiota -dependent manner, as a discovery platform to identify target genes with the potential to involve in tumor regulation. The deep sequencing analysis reveals regulatory functions of microbiota-mediated circular RNA (circRNA)/microRNA networks that may contribute to cancer progression.