Project description:A 8,392-nucleotide-long DNA fragment from Buchnera aphidicola (endosymbiont of the aphid Schizaphis graminum) contained five genes of the tryptophan biosynthetic pathway [trpDC(F)BA] which code for enzymes converting anthranilate to tryptophan. These genes are probably arranged as a single transcription unit. Downstream of the trp genes were ORF-V, ORF-VI, and P14, three open reading frames which in Escherichia coli are also found downstream of the trp operon. Upstream of the B. aphidicola trp genes were two unidentified open reading frames, one of which potentially codes for a membrane-spanning protein with a leader sequence. Evidence for the presence of trpB in the endosymbionts of eight additional species of aphids and two species of whiteflies was obtained. These results as well as those of A. E. Douglas and W. A. Prosser (J. Insect Physiol. 38:565-568, 1992) suggest that aphid endosymbionts are capable of synthesizing tryptophan, which is required by the aphid host.
Project description:We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80-150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of approximately 1,200 polymorphic sites. Comparison of the 618-kb (kbp) genome with the two other Buchnera genomes revealed a nearly perfect gene-order conservation, indicating that the onset of genomic stasis coincided closely with establishment of the symbiosis with aphids, approximately 200 million years ago. Extensive genome reduction also predates the synchronous diversification of Buchnera and its host; but, at a slower rate, gene loss continues among the extant lineages. A computational study of protein folding predicts that proteins in Buchnera, as well as proteins of other intracellular bacteria, are generally characterized by smaller folding efficiency compared with proteins of free living bacteria. These and other degenerative genomic features are discussed in light of compensatory processes and theoretical predictions on the long-term evolutionary fate of symbionts like Buchnera.
Project description:Switchgrass (Panicum virgatum L.) is an important crop for biofuel production but it also serves as host for greenbugs (Schizaphis graminum Rondani; GB). Although transcriptomic studies have been done to infer the molecular mechanisms of plant defense against GB, little is known about the effect of GB infestation on the switchgrass protein expression and phosphorylation regulation. The global response of the switchgrass cultivar Summer proteome and phosphoproteome was monitored by label-free proteomics shotgun in GB-infested and uninfested control plants at 10 days post infestation. Peptides matching a total of 3,594 proteins were identified and 429 were differentially expressed proteins in GB-infested plants relative to uninfested control plants. Among these, 291 and 138 were up and downregulated by GB infestation, respectively. Phosphoproteome analysis identified 310 differentially phosphorylated proteins (DP) from 350 phosphopeptides with a total of 399 phosphorylated sites. These phosphopeptides had more serine phosphorylated residues (79%), compared to threonine phosphorylated sites (21%). Overall, KEGG pathway analysis revealed that GB feeding led to the enriched accumulation of proteins important for biosynthesis of plant defense secondary metabolites and repressed the accumulation of proteins involved in photosynthesis. Interestingly, defense modulators such as terpene synthase, papain-like cysteine protease, serine carboxypeptidase, and lipoxygenase2 were upregulated at the proteome level, corroborating previously published transcriptomic data.