Project description:Null mutations of tomato FRUITFULL-like genes FUL1, FUL2, MBP10, MBP20 caused delayed flowering and branched inflorescence, so we sequenced mRNA from vegetative meristems (VM), transition meristems (TM), floral meristems (FM), and FM of the first sympodial shoot of tomato mutant ful1/ful2/mbp10/mbp20 (slful) as well as the wild type Moneyberg (WT) to see genome-wide expression changes affected by the mutations.
Project description:fasciated ear4 (fea4) is a semi-dwarfed mutant with fasciated ears and tassels, and greatly enlarged vegetative and inflorescence meristems. Chromatin Immunoprecipitation-sequencing (ChIP-seq) and expression profiling by RNA-seq suggest that fea4 is required to regulate the auxin response and leaf differentiation programs in the periphery of the meristem, suggesting a new mechanism of meristem size regulation that is spatially and mechanistically distinct from the CLV-WUS model.
Project description:250 adult T. urticae females from the London strain (grown on acyanogenic P. vulgaris cv. Prelude bean plants) were transferred to cyanogenic P. lunatus cv. 8078 bean plants. Thirty-five generations after the host transfer, total RNA was extracted from mites growing on both bean species (London and London-CYANO strain) and used in in a genome-wide gene expression microarray (Sureprint G3 microarray, Agilent) experiment to assess significantly differentially expressed genes (FC ≥ 2 and FDR-corrected p-value < 0.05) between mites grown on P. vulgaris (cv. Prelude) bean plants (London strain) and mites grown for 35 generations on P. lunatus (cv. 8078) bean plants (London-CYANO strain).
Project description:Paraburkholderia phymatum belongs to the β-subclass of proteobacteria. It has recently been shown to be able to nodulate and fix nitrogen in symbiosis with several mimosoid and papillionoid legumes. In contrast to symbiosis of legumes with α-proteobacteria, very little is known about the molecular determinants underlying the successful establishment of this mutualistic relationship with β-proteobacteria. In this study, we analyzed RNA-seq data of free-living P. phymatum growing under nitrogen replete and limited conditions, the latter partially mimicking the situation in nitrogen deprived soils. Among the genes up-regulated under nitrogen limitation, we found genes involved in exopolysaccharide production and motility, two traits relevant for plant root infection. Next, RNA-seq data of P. phymatum grown under free-living conditions and from symbiotic root nodules of Phaseolus vulgaris (common bean) were generated and compared. Among the genes highly up-regulated during symbiosis, we identified an operon encoding a potential cytochrome o ubiquinol oxidase (Bphy_3646-49). Bean root nodules induced by a cyoB mutant strain showed reduced nitrogenase and nitrogen fixation abilities suggesting an important role of the cytochrome for respiration inside the nodule. Analysis of mutant strains for RNA polymerase transcription factor rpoN (σ54) and its activator NifA indicated that – similar to the situation in α-rhizobia – P. phymatum RpoN and NifA are key regulators during symbiosis with P. vulgaris.
Project description:TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in the defense responses to biotic and abiotic stresses. Here we identified the TIFY genes (designated as PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Twenty-three genes from the PvTIFY gene family were identified through whole genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the designed Bean Custom Array 90K was performed in transgenic roots of composite plants with modulated -RNAi-silencing or over-expression- PvTIFY10C gene expression. Data were interpreted using Mapman adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress response and metabolism in silenced vs. over-expressing roots. These data point to transcript reprogramming -mainly repression- orchestrated by PvTIFY10C. In addition we found that several PvTIFY genes as well as genes from the JA biosynthetic pathway responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, signaling, were oppositely-regulated in control vs. PvTIFY10C silenced roots. These data indicate that PvTIFY10C regulates, directly or indirectly, gene expression of some P-responsive genes something that could be mediated by JA-signaling. Our work contributed to the functional characterization of PvTIFY transcriptional regulators in common bean, an agronomically important legume. Members from the large PvTIFY gene family are important global transcriptional regulators that could participate as repressors of the JA signaling pathway. In addition we propose that the JA-signaling pathway that involves PvTIFY genes might play a role in regulating the plant response / adaptation to P-starvation.
Project description:At the transition from vegetative to reproductive growth in rice, a developmental program change occurs, resulting in panicle (rice inflorescence) formation. The initial event of the transition is the change of the shoot apical meristem (SAM) to an inflorescence meristem (IM), accompanied by a rapid increase in the meristem size. Suppression of leaf growth also occurs, resulting in the formation of bracts. The IM generates branch meristems (BMs), indeterminate meristems that reiteratively generate next-order meristems. All meristems eventually acquire a determinate spikelet meristem identity and terminate after producing a floret. ABERRANT PANICLE ORGANIZATION2 (APO2) is the rice ortholog of Arabidopsis (Arabidopsis thaliana) LEAFY (LFY), a plant-specific transcription factor. APO2 is a positive regulator of panicle branch formation. Here, we show that APO2 is also required to increase the meristem size of the IM and suppress bract outgrowth. We identified genes directly and indirectly regulated by APO2 and identified APO2-binding sites by ChIP-seq analysis. These analyses showed that APO2 directly controls known regulators of panicle development, including SQUAMOSA PROMOTER BINDING PROTEIN LIKE14 and NECK LEAF1. Furthermore, we revealed that a set of genes act as downstream regulators of APO2 in controlling meristem cell proliferation at the reproductive transition, bract suppression, and panicle branch formation. Our findings indicate that APO2 acts as a master regulator of rice panicle development by regulating multiple steps in the reproductive transition through directly controlling a set of genes.
Project description:250 adult T. urticae females from the London strain (grown on acyanogenic P. vulgaris cv. Prelude bean plants) were transferred to cyanogenic P. lunatus cv. 8078 bean plants. Thirty-five generations after the host transfer, total RNA was extracted from mites growing on both bean species (London and London-CYANO strain) and used in in a genome-wide gene expression microarray (Sureprint G3 microarray, Agilent) experiment to assess significantly differentially expressed genes (FC M-bM-^IM-% 2 and FDR-corrected p-value < 0.05) between mites grown on P. vulgaris (cv. Prelude) bean plants (London strain) and mites grown for 35 generations on P. lunatus (cv. 8078) bean plants (London-CYANO strain). 4 replicates for one comparison: mites of the London strain grown on P. lunatus for 35 generations (London-CYANO) compared to mites of the London strain grown on P. vulgaris bean plants (London)
Project description:TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in the defense responses to biotic and abiotic stresses. Here we identified the TIFY genes (designated as PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Twenty-three genes from the PvTIFY gene family were identified through whole genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the designed Bean Custom Array 90K was performed in transgenic roots of composite plants with modulated -RNAi-silencing or over-expression- PvTIFY10C gene expression. Data were interpreted using Mapman adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress response and metabolism in silenced vs. over-expressing roots. These data point to transcript reprogramming -mainly repression- orchestrated by PvTIFY10C. In addition we found that several PvTIFY genes as well as genes from the JA biosynthetic pathway responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, signaling, were oppositely-regulated in control vs. PvTIFY10C silenced roots. These data indicate that PvTIFY10C regulates, directly or indirectly, gene expression of some P-responsive genes something that could be mediated by JA-signaling.