Project description:Tissue repair processes maintain proper organ function following mechanical or infection related damage. In addition to anti-bacterial properties, MAIT cells express a tissue repair transcriptomic program and promote skin wound healing when expanded. Herein, we use a human‑like full‑thickness skin excision mouse model to assess the underlying mechanisms of MAIT cell tissue repair function. Single-cell RNAseq analysis suggests that skin MAIT cells already express a repair program at steady state. Following skin excision, MAIT cells promote keratinocyte proliferation thereby accelerating healing. Using skin grafts, parabiosis and adoptive transfer experiments, we show that MAIT cells migrate into the wound from other tissues in a TCR independent but CXCR6 dependent manner. Amphiregulin secreted by MAIT cells following excision promotes wound healing. The repair function is independent of sustained TCR stimulation. Overall, our study provides mechanistic insight into MAIT cell wound healing function in the skin.
Project description:The expression profile during wound repair of cutaneous excisional wound (2x2 cm) was studied. The tissue was sampled from the centre of the open wound (day 3/7/14) or centre of the wound scar (day 21/35/70). The microarray slide were scanned in low intensity scan and high intensity scan mode. Wound tissue (day 3, day 7, day 14, day 21, day 35, day 70, n = 4 per interval) vs. control - uninjured skin (day 0, n=4 ). In each interval two biological replicates of four were labeled with flip dyes.
Project description:The expression profile during wound repair of cutaneous excisional wound (2x2 cm) was studied. The tissue was sampled from the centre of the open wound (day 3/7/14) or centre of the wound scar (day 21/35/70). The microarray slide were scanned in low intensity scan and high intensity scan mode.
Project description:Non-healing wounds are a major area of unmet clinical need that remain problematic to treat; therefore, improved understanding of pro-healing mechanisms is invaluable. The enzyme arginase1 is involved in pro-healing responses with its role in macrophages best-characterised. Arginase1 is also expressed by keratinocytes; however, the function of arginase1 in these critical wound repair cells is not understood. We characterised arginase1 expression in keratinocytes during normal cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound edge. Interestingly, epidermal arginase1 expression was decreased in both human and murine delayed healing wounds. We, therefore, generated a keratinocyte specific arginase1-null mouse model (K14-cre;Arg1fl/fl) to explore arginase function. Wound repair, linked to changes in keratinocyte proliferation, migration and differentiation, was significantly delayed in K14-cre;Arg1fl/flmice. Gene expression was studied by microarray.
Project description:To show the similarity among MAIT-iPSCs, hiPSCs and hESCs and the gradual change of global gene expression of reMAIT cells along with differentiation, this experiment was designed. MAIT cells, MAIT-iPSCs, hiPSCs, hESCs, MAIT cells, and reMAIT cells at the several differerent stages of differentiation were collected. Then, they were applied in this experiment.
Project description:To investigate the effect of cholic acid sulfate to MAIT cells, PBMCs were stimulated with 5-OP-RU and CA7S and scRNA sequencing was performed. Inflammatory genes were induced by 5-OP-RU, while wound healing related genes were inducesed by CA7S. This analysis showed that cholic acid sulfate may contributes to maintenance of MAIT cells.
Project description:MAIT cells (MAITs) represent an abundant T lymphocyte subset with unique specificity for microbial metabolites presented by the MHC-1b molecule, MR1. MAIT conservation along evolution indicates important, non-redundant functions, but their low frequency in mice has hampered their detailed characterization. Here, we performed a transcriptomic analysis of murine MAITs in comparison with NKT subsets and with mainstream T cells in spleen and peripheral organs of B6-MAIT/CAST mice expressing a Rorc-GFP transgene. MAIT and NKT cells have been FACS-sorted after tetramer staining (MR1:5-OP-RU Tet+ for MAIT, CD1d:PBS57Tet+ for NKT), and 1/17 subsetting based on the expression of Rorc.
Project description:The present study aimed to delineate the central mechanisms by which androgens delay wound repair. Blocking the conversion of testosterone to 5alpha-dihydrotestosterone (DHT) by 5alpha-reductase limits its ability to impair skin wound healing, suggesting that DHT is a more potent inhibitor of repair than is testosterone. This study aims to identify, through transcription profiling, potential mechanisms by which the 5alpha-reductase inhibitor MK-434 modulates repair. Microarray analysis of wound RNA samples from rats in which the transformation of testosterone to DHT is prevented has identified biological processes and key individual genes through which DHT may contribute to the altered healing profile in such animals. These include genes with putative roles in wound contraction and re-epithelialization.
Project description:Problem: Mucosal-Associated Invariant T (MAIT) cells have been recently identified at the maternal-fetal interface. However, transcriptional programming of decidual MAIT cells in pregnancy remains poorly understood. Method of Study: We employed a multiomic approach to address this question. Mononuclear cells from the decidua basalis and parietalis, and control PBMCs, were analyzed via flow cytometry to investigate MAIT cells in the decidua and assess their transcription factor expression. In a separate study, both decidual and matched peripheral MAIT cells were analyzed using Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq) coupled with gene expression analysis. Lastly, decidual MAIT cells were stimulated with E. coli and expression of MR1 by antigen presenting cells was measured to evaluate decidual MAIT cell function. Results: First, we identified MAIT cells in both the decidua basalis and parietalis. CITE-seq, coupled with scRNAseq gene expression analysis, highlighted transcriptional programming differences between decidual and matched peripheral MAIT cells at a single cell resolution. Transcription factor expression analysis further highlighted transcriptional differences between decidual MAIT cells and non-matched peripheral MAIT cells. Functionally, MAIT cells are skewed towards IFNg and TNFa production upon stimulation, with E. coli leading to IFNg production. Lastly, we demonstrate that MR1, the antigen presenting molecule restricting MAIT cells, is expressed by decidual APCs. Conclusion: MAIT cells are present in the decidua basalis and obtain a unique gene expression profile. The presence of MR1 on APCs coupled with in vitro activation by E. coli suggests that MAIT cells might be involved in tissue-repair mechanisms at the maternal-fetal interface.