Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:Although an appropriate range of fluoride is thought to be safe and effective, excessive fluoride intake results in toxic effects in either hard tissues of teeth and skeleton or soft tissues of kidney, lung and brain. It is also well known that fluoride at a millimolar range elicits the complex cellular responses such as enzyme activity, signal transduction and apoptosis in many kinds of cells. However, its toxic effects are still unclear. In this study, to identify genes involved in cell death induced by sodium fluoride (NaF) in rat oral epithelial ROE2 cells, global-scale gene expression analysis was carried out using a GeneChip® system.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome.
2014-02-04 | GSE54290 | GEO
Project description:Effects of Silver Diamine Fluoride on the Oral Microbiome
Project description:Although an appropriate range of fluoride is thought to be safe and effective, excessive fluoride intake results in toxic effects in either hard tissues of teeth and skeleton or soft tissues of kidney, lung and brain. It is also well known that fluoride at a millimolar range elicits the complex cellular responses such as enzyme activity, signal transduction and apoptosis in many kinds of cells. However, its toxic effects are still unclear. In this study, to identify genes involved in apoptosis induced by sodium fluoride (NaF) in rat oral epithelial ROE2 cells, global-scale gene expression analysis was carried out using a GeneChipM-BM-. system. NaF (2 mM) significantly induced apoptosis accompaning chromatin condensation and caspase-3 activation. Total RNA samples were prepared from the NaF-treated cells, and quality of the RNA was analyzed using a Bioanalyzer 2100. Gene expression was monitored by an Affymetrix GeneChipM-BM-. system with a Rat Genome 230 2.0 array. Sample preparation for array hybridization was carried out as described in the manufacturerM-bM-^@M-^Ys instructions.
Project description:Though fluoride is considered an essential trace element, chronic exposure to fluoride is known to cause toxic effects. Chronic exposure of high concentration of fluoride may leads to fluorosis. To understand the molecular mechanism of fluoride induced toxicity gene expression profiling was performed on osteosarcoma cells (HOS). Cells were exposed to sub-lethal concentration of fluoride (8 ppm) for 30 days. Our result demonstrates that fluoride alters multiple biological pathways including bone development, osteoblast differentiation and apoptotic pathways.
Project description:Tissue response following implantation determines the success of the healing process. This response is not only dependent on the chemical properties of the implant surface but also by the surface topography or its roughness. Although in vitro and in vivo studies show improved results with rough- and fluoride-modified implants, the mechanisms behind these findings are still unknown. Here, we have used a two step procedure to identify novel genes related to the early cell response of primary human osteoblasts to roughness and fluoride-modified titanium implants. 217 genes were identified by microarray analysis as response genes to roughness and 198 genes as response genes to fluoride. 11 of these identified genes have been related to bone and mineralization and were further investigated by real-time RT-PCR. After one day of culture, TLR3, ANKH, DCN, OC and RUNX2 were classified as responsive genes to roughness; DLX2 and TUFT1 as responsive genes to fluoride treatment. COLL-I, PTHLH, HES1, FST, ENPP1 and THRA as responsive genes to both, roughness and fluoride treatment. In conclusion, our strategy was useful for identifying novel genes that might be involved in the early response of osteoblasts to roughness and fluoride treatment of titanium implants. Tissue response following implantation determines the success of the healing process. This response is not only dependent on the chemical properties of the implant surface but also by the surface topography or its roughness. Although in vitro and in vivo studies show improved results with rough- and fluoride-modified implants, the mechanisms behind these findings are still unknown. Here, we have used a two step procedure to identify novel genes related to the early cell response of primary human osteoblasts to roughness and fluoride-modified titanium implants. 217 genes were identified by microarray analysis as response genes to roughness and 198 genes as response genes to fluoride. 11 of these identified genes have been related to bone and mineralization and were further investigated by real-time RT-PCR. After one day of culture, TLR3, ANKH, DCN, OC and RUNX2 were classified as responsive genes to roughness; DLX2 and TUFT1 as responsive genes to fluoride treatment. COLL-I, PTHLH, HES1, FST, ENPP1 and THRA as responsive genes to both, roughness and fluoride treatment. In conclusion, our strategy was useful for identifying novel genes that might be involved in the early response of osteoblasts to roughness and fluoride treatment of titanium implants.