Project description:Background Alterations of the gut microbiome have been linked to multiple chronic diseases. However, the drivers of such changes remain largely unknown. The oral cavity acts as a major route of exposure to exogenous factors including pathogens, and processes therein may affect the communities in the subsequent compartments of the gastrointestinal tract. Here, we perform strain-resolved, integrated multi-omic analyses of saliva and stool samples collected from eight families with multiple cases of type 1 diabetes mellitus (T1DM). Results We identified distinct oral microbiota mostly reflecting competition between streptococcal species. More specifically, we found a decreased abundance of the commensal Streptococcus salivarius in the oral cavity of T1DM individuals, which is linked to its apparent competition with the pathobiont Streptococcus mutans. The decrease in S. salivarius in the oral cavity was also associated with its decrease in the gut as well as higher abundances in facultative anaerobes including Enterobacteria. In addition, we found evidence of gut inflammation in T1DM as reflected in the expression profiles of the Enterobacteria as well as in the human gut proteome. Finally, we were able to follow transmitted strain-variants from the oral cavity to the gut at the metagenomic, metatranscriptomic and metaproteomic levels, highlighting not only the transfer, but also the activity of the transmitted taxa along the gastrointestinal tract. Conclusions Alterations of the oral microbiome in the context of T1DM impact the microbial communities in the lower gut, in particular through the reduction of “oral-to-gut” transfer of Streptococcus salivarius. Our results indicate that the observed oral-cavity-driven gut microbiome changes may contribute towards the inflammatory processes involved in T1DM. Through the integration of multi-omic analyses, we resolve strain-variant “mouth-to-gut” transfer in a disease context.
Project description:The gut microbiome plays an important role in normal immune function and has been implicated in several autoimmune disorders. Here we use high-throughput 16S rRNA sequencing to investigate the gut microbiome in subjects with multiple sclerosis (MS, n=61) and healthy controls (n=43). Alterations in the gut microbiome in MS include increases in the genera Methanobrevibacter and Akkermansia and decreases in Butyricimonas, and correlate with variations in the expression of genes involved in dendritic cell maturation, interferon signaling and NF-kB signaling pathways in circulating T cells and monocytes. Patients on disease-modifying treatment show increased abundances of the genera Prevotella and Sutterella, and decreased Sarcina, compared to untreated patients. MS patients of a second cohort show elevated breath methane compared to controls, consistent with our observation of increased gut Methanobrevibacter in MS in the first cohort. Further study is required to assess whether the observed alterations in the gut microbiome play a role in, or are a consequence of, MS pathogenesis.