Project description:Thermophilic fungi are eukaryotic species that grow at high temperatures, but little is known about the thermophily of thermophilic fungi. Here the proteome and N-glycoproteome of Chaetomium thermophilum at varying culture temperatures (30℃, 50℃, and 55℃) were studied using hydrophilic interaction liquid chromatography enrichment and high-resolution liquid chromatography–tandem mass spectroscopy analysis. In proteome, the numbers of differentially expressed proteins were 1274, 1374, and 1063 in T50/T30, T55/T30, and T55/T50, respectively. The up-regulated proteins were involved in biological processes, such as protein folding and carbohydrate metabolism. Most down-regulated proteins were involved in molecular functions, such as structural constituent of the ribosome and structural activity. For N-glycoproteome, the numbers of differentially expressed N-glycoproteins were 160, 176, and 128 in T50/T30, T55/T30, and T55/T50, respectively. The differential glycoproteins were mainly involved in various types of N-glycan biosynthesis, mRNA surveillance pathway, and protein processing in the endoplasmic reticulum. These results indicated that an efficient protein homeostasis pathway plays an essential role in the thermophily of C. thermophilum, and N-glycosylation is involved by affecting related proteins. This is the first study to reveal thermophilic fungi's physiological response to high-temperature adaptation using omics analysis, facilitating the exploration of the thermophily mechanism of thermophilic fungi.
Project description:The clinical importance of microbiomes to the chronicity of wounds is widely appreciated, yet little is understood about patient-specific processes shaping wound microbiome composition. Here, a two-cohort microbiome-genome wide association study is presented through which patient genomic loci associated with chronic wound microbiome diversity were identified. Further investigation revealed that alternative TLN2 and ZNF521 genotypes explained significant inter-patient variation in relative abundance of two key pathogens, Pseudomonas aeruginosa and Staphylococcus epidermidis. Wound diversity was lowest in Pseudomonas aeruginosa infected wounds, and decreasing wound diversity had a significant negative linear relationship with healing rate. In addition to microbiome characteristics, age, diabetic status, and genetic ancestry all significantly influenced healing. Using structural equation modeling to identify common variance among SNPs, six loci were sufficient to explain 53% of variation in wound microbiome diversity, which was a 10% increase over traditional multiple regression. Focusing on TLN2, genotype at rs8031916 explained expression differences of alternative transcripts that differ in inclusion of important focal adhesion binding domains. Such differences are hypothesized to relate to wound microbiomes and healing through effects on bacterial exploitation of focal adhesions and/or cellular migration. Related, other associated loci were functionally enriched, often with roles in cytoskeletal dynamics. This study, being the first to identify patient genetic determinants for wound microbiomes and healing, implicates genetic variation determining cellular adhesion phenotypes as important drivers of infection type. The identification of predictive biomarkers for chronic wound microbiomes may serve as risk factors and guide treatment by informing patient-specific tendencies of infection.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome. The results were used to demonstarte the usefulness of applying HuMiChip to human microbiome studies.
Project description:HuMiChip was used to analyze human oral and gut microbiomes, showing significantly different functional gene profiles between oral and gut microbiome.
2014-02-04 | GSE54290 | GEO
Project description:Bacterial microbiomes from non-cultivated soils with varying levels of suppression of AMF activity
Project description:We developed an approach named Rapid Assay of Individual Microbiome (RapidAIM) to screen xenobiotics against individual microbiomes, and conducted a proof-of-concept (POC) study on the use of RapidAIM. We tested 43 compounds against five individual microbiomes. The individual microbiomes are cultured in 96-well plates for 24 hours and the samples are then analyzed using a metaproteomics-based analytical approach to gain functional insight into the individual microbiomes responses following drug treatments.The tested compounds significantly affected overall microbiome abundance, microbiome composition and functional pathways at multiple taxonomic levels. The microbiome responses to berberine, metformin, diclofenac, fructooligosaccharide and most antibiotics were consistent among most individual microbiomes. Interestingly, most of our tested NSAIDs, statins, and histamine-2 blockers induced individually distinct responses. Our workflow offers an effective solution to systematically study the effects of many different compounds on individual microbiomes.
Project description:RNA was extracted from the meninges of mice from either Specific pathogen free or Germ free facilities or from the offspring of mice reconstituted with different human microbiomes.
Project description:HuMiChip2 was applied to analyze perform both strain-level identification and the functional profiling of human gut microbiomes from alcoholic cirrhosis patients and healthy individuals with alcohol abuse.