Project description:The ammonia-oxidizing bacterium Nitrosomonas europaea has been widely recognized as an important player in the nitrogen cycle as well as one of the most abundant members in microbial communities for the treatment of industrial or sewage wastewater. Its natural metabolic versatility and extraordinary ability to degrade environmental pollutants enable it to thrive under various harsh environmental conditions. This model of N. europaea (iGC535) is the most accurate metabolic model for a nitrifying organism to date, reaching an average prediction accuracy of over 90% under several growth conditions. The manually curated model can predict phenotypes under chemolithotrophic and chemolithoorganotrophic conditions while oxidating methane and wastewater pollutants.
It is the first upload of the model.
Project description:The effects of the aromatic hydrocarbons benzene and toluene on Nitrosomonas europaea, a nitrifying bacterium that plays an important role in the removal of nitrogen from wastewater treatment plants, were studied in batch reactors. Exposure to 20 M toluene and 40 M benzene resulted in a 50% reduction in nitrifying activity after 1 h. However, Affymetrix microarray experiments detected no significant changes in gene expression in toluene exposed cells. Cells exposed to benzene were found to up-regulate a gene cluster (NE 1545 - NE 1551). This gene cluster appears to be involved with fatty-acid metabolism, lipid and membrane protein biosynthesis. TEM experiments reveal that cells exposed to benzene decrease the thickness of their membrane and the membrane becomes more structured. Keywords: stress response, benzene, toluene
Project description:As one of the most important environmental factors, heat stress (HS) has been found to affect various biological activities of organisms such as growth, signal transmission, primary metabolism and secondary metabolism. Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Previous research showed that HS can induce the biosynthesis of ganoderic acids (GAs). In this study, we found the existence of hydrogen sulfide in Ganoderma lucidum; moreover, HS increased GAs biosynthesis and could affect the hydrogen sulfide content. We found that sodium hydrosulfide (NaHS), an exogenous donor of hydrogen sulfide, could revert the increased GAs biosynthesis elicited by HS. This result indicated that an increased content of hydrogen sulfide, within limits, was associated with HS-induced GAs biosynthesis. Our results further showed that the GAs content was increased in CBS-silenced strains and could be reverted to WT strain levels by the addition of NaHS. Transcriptomic analyses indicated that that H2S can affect various intracellular signal pathways and physiological processes in G. lucidum. Further studies showed that H2S could affect the intracellular calcium concentration and thus regulate the biosynthesis of GAs. This study demonstrated that hydrogen sulfide is involved in the regulation of secondary metabolic processes induced by heat stress in filamentous fungi.
Project description:Heavy metals have been postulated as significant nitrification inhibitor in wastewater treatment plant. The effect of heavy metals such as Cd2+, Cu2+ and Hg2+ to nitrifying bacterium, Nitrosomonas europaea, was studied in pseudo-steady state batch reactor. Under incubation of Nitrosomonas europaea with 1 ?M CdCl2 for 1 hour, transcripts for 66 of 2460 genes were found at high level, yet transcripts of 50 genes were found at low level. Mercury resistance genes (merACDPT) showed 277-fold up regulation. Keywords: cadmium, stress response, global transcription, mercury resistance genes, merA,
2008-03-22 | GSE9221 | GEO
Project description:Wastewater and waste treatment
Project description:Heavy metals have been postulated as significant nitrification inhibitor in wastewater treatment plant. The effect of heavy metals such as Cd2+, Cu2+ and Hg2+ to nitrifying bacterium, Nitrosomonas europaea, was studied in pseudo-steady state batch reactor. Under incubation of Nitrosomonas europaea with 1 ?M CdCl2 for 1 hour, transcripts for 66 of 2460 genes were found at high level, yet transcripts of 50 genes were found at low level. Mercury resistance genes (merACDPT) showed 277-fold up regulation. Keywords: cadmium, stress response, global transcription, mercury resistance genes, merA, The 1 uM CdCl2 caused more than 50 % inhibition in physiological response for 1 hour incubation. Transcriptional levels of the cells inhibited by cadmium were compared with the cells under control condition.
Project description:Bio-augmentation could be a promising strategy to improve processes for treatment and resource recovery from wastewater. In this study, the Gram-positive bacterium Bacillus subtilis was co-cultured with the microbial communities present in wastewater samples with high concentrations of nitrate or ammonium. Glucose supplementation (1%) was used to boost biomass growth in all wastewater samples. In anaerobic conditions, the indigenous microbial community bio-augmented with B. subtilis was able to rapidly remove nitrate from wastewater. In these conditions, B. subtilis overexpressed nitrogen assimilatory and respiratory genes including NasD, NasE, NarG, NarH, and NarI, which arguably accounted for the observed boost in denitrification. Next, we attempted to use the the ammonium- and nitrate-enriched wastewater samples bio-augmented with B. subtilis in the cathodic compartment of bioelectrochemical systems (BES) operated in anaerobic condition. B. subtilis only had low relative abundance in the microbial community, but bio-augmentation promoted the growth of Clostridium butyricum and C. beijerinckii, which became the dominant species. Both bio-augmentation with B. subtilis and electrical current from the cathode in the BES promoted butyrate production during fermentation of glucose. A concentration of 3.4 g/L butyrate was reached with a combination of cathodic current and bio-augmentation in ammonium-enriched wastewater. With nitrate-enriched wastewater, the BES effectively removed nitrate reaching 3.2 mg/L after 48 h. In addition, 3.9 g/L butyrate was produced. We propose that bio-augmentation of wastewater with B. subtilis in combination with bioelectrochemical processes could both boost denitrification in nitrate-containing wastewater and enable commercial production of butyrate from carbohydrate- containing wastewater, e.g. dairy industry discharges. These results suggest that B. subtilis bio-augmentation in our BES promotes simultaneous wastewater treatment and butyrate production.
Project description:Hydrogen sulfide (H2S) is well known to cause irritation and damage to airway following inhalation, but the mechanism by which H2S contributes to airway toxicity is unclear. We apply transcriptomics to demonstrate the possible effects, obtain valuable information about adverse health effects following H2S exposure and to study the molecular mechanisms of the gas toxicity in trachea.