Project description:Apple seeds were subjected to accelerated aging. After 7, 14, and 21 days of aging, embryos were isolated. Part of the embryos were shortly fumigated with nitric oxide (NO). After 48 h of embryos culture (aged embryos or aged embryos treated with NO), embryonic axes were used to extract the total RNA. RT-qPCR were done to analyze the changes in the expression of genes related to seed aging. Short-term (3 h) treatment of embryos isolated from accelerated aged apple seeds (Malus domestica Borkh.) with NO partially reduced the effects of aging. The aim of the study was to investigate the impact of the short-term NO treatment of embryos isolated from apple seeds subjected to accelerated aging on the expression of genes potentially linked to the regulation of seed aging. Apple seeds were artificially aged for 7, 14, or 21 days. Then the embryos were isolated from the seeds, treated with NO, and cultured for 48 h. Progression of seeds aging was associated with the decreased transcript levels of most of the analyzed genes (Lea1, Lea2a, Lea4, Hsp70b, Hsp20a, Hsp20b, ClpB1, ClpB4, Cpn60a, Cpn60b, Raptor, and Saur). The role of NO in the mitigation of seed aging depended on the duration of the aging. After 7 and 14 days of seed aging, a decreased expression of genes potentially associated with the promotion of aging (Tor, Raptor, Saur) was noted. NO-dependent regulation of seed aging was associated with the stimulation of the expression of genes encoding chaperones and proteins involved in the repair of damaged proteins. After NO application, the greatest upregulation of ClpB, Pimt was noted in the embryos isolated from seeds subjected to 7-day long accelerated aging, Hsp70b, Hsp70c, Cpn in the embryos of seeds aged for 14 days, and Lea2a in the embryos of seeds after 21 days of aging.
Project description:Plant cyclophilins are widely involved in a variety of abiotic stress regulation processes. Thirty cyclophilin members were identified from apple and their patterns of response to abiotic stress were examined. Apple seedlings with consistent growth were selected, cultivated under drought stress conditions simulated by PEG6000, sampled according to different time periods, and quickly frozen in liquid nitrogen.Total RNAs of apple plantlets were isolated using an RNA extraction kit (Tiangen, Beijing, China).
Project description:Root and leave samples of 4 different apple genotypes were investigated in order to analyse the gene expression after infection with Apple Replant Disease (ARD). All genotypes were cultivated in ARD-infected soil and gamma-irradiated (disinfected) soil in the greenhouse for 7 days. The ARD soil originated from two different orchards representing two different soil compositions. After 7 days root tissue was collected from each plant and used for the subsequent gene expression analysis. This work was part of the project BonaRes-ORDIAmur funded by the German Federal Ministry of Research and Education within the frame of the program BonaRes (grant no. 031B0025B). It was also funded by the German Research Foundation (DFG) via the research training group GRK1798 "Signaling at the Plant-Soil Interface" and a grant to BL and LB (BE 1174/19-1).
Project description:Comparison of seed of two different types of developing fruits in apple: central and lateral. Our objective is to find transcriptomic signatures that allow to explain the physiological drop of young lateral fruitlets Apple seeds transcriptomes were generated by deep sequencing by triplicate from seeds collected from central and lateral fruitlets at 20 days after petal fall (DAPF)