Project description:The GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in the resistance to quinolones and beta-lactams such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold). The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were NorC (4-fold) and AbcA (6-fold). Other categories of genes such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time RT-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or down regulation by NorG. The norG mutant showed a twofold increase in the resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus. The goal of this study was to define the transcriptional response of S. aureus norG mutant cells. To do so, commercially available S. aureus Affymetrix GeneChips (Santa Clara, CA) were used to compare the expression properties of wild type (ISP794) and isogenic norG (QT11) mutant cells. S. aureus strains ISP794 and QT11 were grown to mid exponential phase growth, lysed , total bacterial RNA was extracted, labeled and hybridized to commerically available S. aureus Affymetrix GeneChips. In total three biological replicates were compared for each strain background.
Project description:The GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in the resistance to quinolones and beta-lactams such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold). The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were NorC (4-fold) and AbcA (6-fold). Other categories of genes such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time RT-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or down regulation by NorG. The norG mutant showed a twofold increase in the resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus.
Project description:Staphylococcus hominis is frequently isolated from human skin and we hypothesize that it may protect the cutaneous barrier from opportunistic pathogens. We determined that S. hominis makes six unique auto inducing peptide (AIP) signals that inhibit the major virulence factor accessory gene regulator (agr) quorum sensing system of Staphylococcus aureus. We solved and confirmed the structures of three novel AIP signals in conditioned media by mass spectrometry, then validated synthetic AIP activity against all S. aureus agr classes. Synthetic AIPs also inhibited the conserved agr system in a related species, Staphylococcus epidermidis. We determined the distribution of S. hominis agr types on healthy human skin and found S. hominis agr-I and agr-II were highly represented across subjects. Further, synthetic AIP-II was protective in vivo against S. aureus-associated dermonecrotic or epicutaneous injury. Together, these findings demonstrate that a ubiquitous colonizer of human skin has a fundamentally protective role against opportunistic damage.
Project description:Staphylococcus aureus prefers the human anterior nares as its habitat, but nothing is known about the nutritional situation in this ecological niche. Analysis of nasal secretions showed a complex mixture of nutrients at low concentration. Based on these findings a synthetic nasal medium (SNM) was composed, mimicking nasal secretions. We used microarrays in order to investigate pathways and expression patterns important in a synthetic medium mimicking nasal secretions compared to standard laboratory complex medium Staphylococcus aureus USA300 was inoculated in complex medium (BM) or synthetic nasal medium (SNM) to an OD578nm of 0.005 and grown under aerobic conditions until OD578nm of 0.02. RNA was stabilized and extracted at this early growth phase and hybridization was made on Affymetrix microarrays. The aim was to identify genes which are important during growth under the limited conditions present during colonization of human nares