Project description:Tropical theileriosis in a cattle disease of global economic importance, caused by the tick-borne protozoan parasite Theileria annulata. Conventional control strategies are failing to contain the disease and an attractive alternative is the use of pre-existing genetic resistance or tolerance. However, tropical theileriosis tolerant cattle are less productive than some susceptible breeds. To combine resistance and production traits requires an understanding of the mechanisms involved in resistance. Therefore, we have compared the response of monocytes derived from tolerant (Sahiwals, Bos indicus) and susceptible (Holstein-Friesians, B. taurus) cattle to in vitro infection with T. annulata. Over 150 genes exhibited breed-specific differential expression during the course of infection and nearly one third were differentially expressed in resting cells, implying that there are inherent differences between monocytes from the breeds. Fifty sequences currently only match ESTs or are unique to the library used to generate the microarray. The differential expression of a selection of genes was validated by quantitative RT-PCR, e.g. CD9, prion protein and signal-regulatory protein alpha. A large proportion of the differentially expressed genes encode proteins expressed on the plasma membrane or in the extracellular space and cell adhesion was one of the major Gene Ontology biological processes identified. We therefore hypothesise that the breed-specific tolerance of Sahiwal cattle compared to Holstein-Friesians is due to the interaction of infected cells with other immune cells, which influences the immune response generated against T. annulata infection. The BoMP microarray is available from the ARK-Genomics facility (www.ark-genomics.org).
Project description:Bovine tropical theileriosis is a major haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints for of the livestock development programmes in India and southern Asia. Indigenous cattle (Bos indicus) are less affected by this disease than exotic and crossbred cattle. Genetic basis of resistance to tropical theileriosis in indigenous cattle is not well studied. Recent studies gives an idea that differentially genes expressed in exotic and indigenous breeds play an important role in breed specific resistance to tropical theileriosis. The present study was designed to visualize the global gene expression profiling in PBMCs derived from indigenous (Tharparkar) and crossbred cattle with in vitro infection of T. annulata. T. annulata Parbhani strain, originally isolated from Maharashtra (India) and maintained as cryopreserved stabilates of ground-up tick tissue sporozoite (GUTS) of infected H. anatolicum anatolicum was used as infective material. Two separate microarray experiments were carried out using separately each for crossbred and Tharparkar cattle. The crossbred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were downregulated and 485 were upregulated. Their fold change varies from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes. Out of total DEGs in Tharparkar cattle, 451 genes were downregulated and 424 genes were upregulated. Their fold change varies from 94.93 to -19.20. A subset of genes was validated by quantitative RT-PCR and results correlated well with data obtained from the microarrays indicating that the microarray results gave an accurate report of transcript level. Functional annotation study of differentially expressed genes has confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these differentially expressed genes provided an effective way to understand the interaction among them. It is therefore, hypothesised that the dissimilar susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the interaction of infected cells with other immune cells, which ultimately influences the immune response generated against T. annulata infection.
Project description:Bovine tropical theileriosis is a major haemoprotozoan disease associated with high rates of morbidity and mortality particularly in exotic and crossbred cattle. It is one of the major constraints for of the livestock development programmes in India and southern Asia. Indigenous cattle (Bos indicus) are less affected by this disease than exotic and crossbred cattle. Genetic basis of resistance to tropical theileriosis in indigenous cattle is not well studied. Recent studies gives an idea that differentially genes expressed in exotic and indigenous breeds play an important role in breed specific resistance to tropical theileriosis. The present study was designed to visualize the global gene expression profiling in PBMCs derived from indigenous (Tharparkar) and crossbred cattle with in vitro infection of T. annulata. T. annulata Parbhani strain, originally isolated from Maharashtra (India) and maintained as cryopreserved stabilates of ground-up tick tissue sporozoite (GUTS) of infected H. anatolicum anatolicum was used as infective material. Two separate microarray experiments were carried out using separately each for crossbred and Tharparkar cattle. The crossbred cattle showed 1082 differentially expressed genes (DEGs). Out of total DEGs, 597 genes were downregulated and 485 were upregulated. Their fold change varies from 2283.93 to -4816.02. Tharparkar cattle showed 875 differentially expressed genes. Out of total DEGs in Tharparkar cattle, 451 genes were downregulated and 424 genes were upregulated. Their fold change varies from 94.93 to -19.20. A subset of genes was validated by quantitative RT-PCR and results correlated well with data obtained from the microarrays indicating that the microarray results gave an accurate report of transcript level. Functional annotation study of differentially expressed genes has confirmed their involvement in various pathways including response to oxidative stress, immune system regulation, cell proliferation, cytoskeletal changes, kinases activity and apoptosis. Gene network analysis of these differentially expressed genes provided an effective way to understand the interaction among them. It is therefore, hypothesised that the dissimilar susceptibility to tropical theileriosis exhibited by indigenous and crossbred cattle is due to breed-specific differences in the interaction of infected cells with other immune cells, which ultimately influences the immune response generated against T. annulata infection. Global gene expression profiling in PBMCs derived from indigenous (Tharparkar) and crossbred cattle were studied after in vitro infection of T. annulata Parbhani strain at 2h time period. Two separate microarray experiments were carried out using Bovine (V2) Gene Expression Microarray, 4x44K (Agilent). Two biological replicate samples were profiled per condition (i.e. replicates samples each in crossbred and Tharparkar cattle).
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection.
Project description:Theileria annulata is a tick-transmitted apicomplexan parasite that infects and transforms bovine leukocytes into disseminating tumors that cause a disease called tropical theileriosis. Using comparative transcriptomics we identified genes transcriptionally perturbed during Theileria-induced transformation and highlighted a small set of genes associated with leukocyte dissemination. CRISPR/Cas9-mediated knock-down of GZMA and RASGRP1 in macrophages attenuated for dissemination led to a regain in their dissemination in Rag2/gC mice confirming their suppressor roles in vivo. Comparing the transcriptomes of 934 human cancer cell lines to that of Theileria-transformed bovine B cells again highlighted GZMA and RASGRP1 and CRISPR-mediated overexpression of GZMA and RASGRP1 dampened the dissemination potential of human B-lymphomas. The ensemble provide evidence for a novel suppressor function in the dissemination of both T. annulata-transformed bovine leukocytes and human B-lymphomas.
Project description:Investigation of parasite (T. annulata) gene expression over the course of the life-cycle (sporozoite->macroschizont->merozoite->piroplasm). The study focused on the expression of known and putative transcription factors, in particular members of the ApiAP2 gene family. Up-stream motifs associated with stage-specifically expressed genes were identified during the course of the analysis. The experiment investigates Theileria annulata gene expression over a differentiation time-course - sporozoite through to piroplasm. 20 samples were analyzed - 4 x sporozoite (replicates), 3 x macroschizont (replicates), 3 x day 4, 3 x day 7, 3 x day 9 (replicates) and 4 x piroplasm (replicates)
Project description:The experiment investigates bovine gene expression in response to LPS in uninfected and Theileria annulata-infected cell cultures A subset of genes are identified which are activated in response to LPS stimulation with further modulation due to parasite infection. Six experimental conditions with three replicates per condition. Total RNA prepared from cell cultures. BL20 (uninfected bovine lymphosarcoma cell line), BL20 4 hours post-LPS stimulation, BL20 18 hours post-LPS, TBL (T. annulata infected bovine cell line), TBL 4 hours post-LPS, TBL 18 hours post-LPS. Each hydridisation represents bovine and parasite gene expression on a single channel and 2 technical replicates of each probeset are represented on the chip.