Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:Fire disturbances are becoming more common, more intense, and further-reaching across the globe, with consequences for ecosystem functioning. Importantly, fire can have strong effects on the soil microbiome, including community and functional changes after fire, but surprisingly little is known regarding the role of soil fire legacy in shaping responses to recent fire. To address this gap, we conducted a manipulative field experiment administering fire across 32 soils with varying fire legacies, including combinations of 1-7 historic fires and 1-33 years since most recent fire. We analyzed soil metatranscriptomes, determining for the first time how fire and fire legacy interactively affect metabolically-active soil taxa, the microbial regulation of important carbon (C), nitrogen (N) and phosphorus (P) cycling, expression of carbohydrate-cycling enzyme pathways, and functional gene co-expression networks. Experimental fire strongly downregulated fungal activity while upregulating many bacterial and archaeal phyla. Further, fire decreased soil capacity for microbial C and N cycling and P transport, and drastically rewired functional gene co-expression. Perhaps most importantly, we highlight a novel role of soil fire legacy in regulation of microbial C, N, and P responses to recent fire. We observed a greater number of functional genes responsive to the interactive effects of fire and fire legacy than those affected solely by recent fire, indicating that many functional genes respond to fire only under certain fire legacy contexts. Therefore, without incorporating fire legacy of soils, studies will miss important ways that fire shapes microbial roles in ecosystem functioning. Finally, we showed that fire caused significant downregulation of carbon metabolism and nutrient cycling genes in microbiomes under abnormal soil fire histories, producing a novel warning for the future: human manipulation of fire legacies, either indirectly through global change-induced fire intensification or directly through fire suppression, can negatively impact soil microbiome functional responses to new fires.
Project description:Land cover change has long been recognized that marked effect the amount of soil organic carbon. However, little is known about microbial-mediated effect processes and mechanism on soil organic carbon. In this study, the soil samples in a degenerated succession from alpine meadow to alpine steppe meadow in Qinghai-Tibetan Plateau degenerated, were analyzed by using GeoChip functional gene arrays.
2017-01-05 | GSE93158 | GEO
Project description:Microbiome composition of soil, corn (Zea mays) rhizosphere, and western corn rootworm (Diabrotica virgifera virgifera) larvae from cover crop fields
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:These samples are a part of a study investigating microbial responses to cover crop root exudates. We utilized 4 cover crop species (each with unique root exudate profiles), collected the pure root exudates, and applied them to soil mirocosms. metaG, metaT, metaP, and targeted and untargeted metabolomics were applied to assess the microbial responses.
Project description:Fire is a crucial event regulating the structure and functioning of many ecosystems. Yet few studies focused on how fire affects both the taxonomic and functional diversity of soil microbial communities, along with plant diversity and soil carbon (C) and nitrogen (N) dynamics. Here, we analyze these effects for a grassland ecosystem 9-months after an experimental fire at the Jasper Ridge Global Change Experiment (JRGCE) site in California, USA. Fire altered soil microbial communities considerably, with community assembly process analysis indicating that environmental selection pressure was higher in burned sites. However, a small subset of highly connected taxa were able to withstand the disturbance. In addition, fire decreased the relative abundances of most genes associated with C degradation and N cycling, implicating a slow-down of microbial processes linked to soil C and N dynamics. In contrast, fire stimulated plant growth, likely enhancing plant-microbe competition for soil inorganic N. To synthesize our findings, we performed structural equation modeling, which showed that plants but not microbial communities were responsible for the significantly higher soil respiration rates in burned sites. In conclusion, fire is well-documented to considerable alter the taxonomic and functional composition of soil microorganisms, along with the ecosystem functioning, thus arousing feedback of ecosystem responses to affect global climate.