Project description:Here, we report the comparison of transcriptomes of Anabaena sp. PCC7120 and a FurC-overexpressing derivative strain grown under standard conditions (BG11) and after 48 hours of nitrogen step-down (BG110). Anabaena sp PCC7120 is a cyanobacterium that differentiates specialized nitrogen-fixing cells called heterocysts. Our data suggests that FurC directly controls the regulation of heterocyst differentiation and nitrogen fixation in this cyanobacterium. In addition, we found that FurC is also clearly involved in the regulation of several genes belonging to different functional categories, such as iron metabolism, photosynthesis and regulatory functions.
Project description:Here, we report the comparison of transcriptomes of Anabaena sp. PCC7120 and the FurB(Zur) deletion derivative strain (MN38). Anabaena sp PCC7120 is a cyanobacterium that differentiates specialized nitrogen-fixing cells called heterocysts and that is capable of forming biofilms. Our data showed that the deletion of FurB negativily affected the heterocyst development and the biofilm formation. In addition, the RNA-seq data together with gel retardation assays unveiled that FurB is directly involved in the regulation of several genes related to heterocyst development and biofilm formation and other novel functions different from the ones related to the canonical Zur regulon.
Project description:To identify the mechanisms of the adaptation to terrestrial ecosystems, an RNA-seq based transcriptome analysis was conducted on a desiccation resistant cyanobacterium, Nostoc sp. MG11.
Project description:To investigate the function of All0854, we constructed the all0854 deletion mutant Mall0854, in which all0854 was knocked out by CRISPER-cpf1. We then performed gene expression profiling analysis using data obtained from RNA-seq of wide type Nostoc sp. PCC 7120 and Mall0854.
Project description:HILIC runs (separate LC-MS) of mixed proteome from closely related cyanobacterium Nostoc punctiforme ATCC 29133 and Nostoc sp. PCC 7120. Quantitative comparisons across species can only be made using orthologous peptides. All other peptides are used to assess biological variation and MS/MS co-elution study.
Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content. Conclusion: The results of this studyindicatede that strains Nostoc sp. N27P72 can be a good candidate for the commercial production of EPS and might be utilized in bioremediation field as an alternative to synthetic and abiotic flocculants.
Project description:Background: Cyanobacteria are ecologically significant prokaryotes that can be found in heavy metals contaminated environments. As their photosynthetic machinery imposes high demands for metals, homeostasis of these micronutrients has been extensively considered in cyanobacteria. Recently, most studies have been focused on different habitats using microalgae leads to a remarkable reduction of an array of organic and inorganic nutrients, but what takes place in the extracellular environment when cells are exposed to external supplementation with heavy metals remains largely unknown. Methods: Here, extracellular polymeric substances (EPS) production in strains Nostoc sp. N27P72 and Nostoc sp. FB71 was isolated from different habitats and thenthe results were compared and reported . Result: Cultures of both strains, supplemented separately with either glucose, sucrose, lactose, or maltose showed that production of EPS and cell dry weight were boosted by maltose supplementation. The production of EPS (9.1 ± 0.05 μg/ml) and increase in cell dry weight (1.01 ± 0.06 g/l) were comparatively high in Nostoc sp. N27P72 which was isolated from lime stones.The cultures were evaluated for their ability to remove Cu (II), Cr (III), and Ni (II) in culture media with and without maltose. The crude EPS showed metal adsorption capacity assuming the order Ni (II)> Cu (II)> Cr (III) from the metal-binding experiments .Nickel was preferentially biosorbed with a maximal uptake of 188.8 ± 0.14 mg (g cell dry wt) -1 crude EPS. We found that using maltose as a carbon source can increase the production of EPS, protein, and carbohydrates content and it could be a significant reason for the high ability of metal absorbance. FT-IR spectroscopy revealed that the treatment with Ni can change the functional groups and glycoside linkages in both strains. Results of Gas Chromatography-Mass Spectrometry (GC–MS) were used to determine the biochemical composition of Nostoc sp. N27P72, showed that strong Ni (II) removal capability could be associated with the high silicon containing heterocyclic compound and aromatic diacid compounds content.
Project description:Proteogenomics analysis was employed to refine the genome annotation and provide new insights into nitrogen metabolism of Nostoc sp. PCC 7120.
Project description:Change in gene expression for a wild-type (Nostoc punctiforme ATCC 29133) and hmpD-deletion strain (UCD 543) of Nostoc punctiforme ATCC 29133 over the time course of hormogonium development This study is further descirbed in Risser, D.D. and Meeks, J.C. 2013. Comparative transcriptomics with a motility deficient mutant leads to identification of a novel polysaccharide secretion system in Nostoc punctiforme. Molecular Microbiology