Project description:Sex chromosomal abnormalities areare associated with multiple defects. In this study, we retrospectively analyzed the single nucleotide polymorphism (SNP) arrays of 186 early embryos with sex chromosomal abnormalities. using single nucleotide polymorphism (SNP) array. Among them, 52 cases of Turner syndrome, 21 cases of triple X syndrome, 35 cases of Klinefelter syndrome and 14 cases of XYY syndrome were detected. Moreover, 27 cases of mosaic sex chromosomal abnormalities were determined. Sex chromosomal deletions and duplications were found in 37 cases. Overall, our results presented a detailed manifestation of sex chromosomal abnormalities.
Project description:This study aimed to evaluate the clinical value of copy number variations (CNVs) in fetuses with ultrasonic soft markers. Among 1131 fetuses, 729 had single ultrasonic soft marker, 322 had two ultrasonic soft markers, and 80 had three or more ultrasonic soft markers. All fetuses underwent single nucleotide polymorphism (SNP) array analysis. Among 1131 fetuses with ultrasonic soft markers, 46 had chromosomal abnormalities. In addition to the 46 fetuses with chromosomal abnormalities consistent with the results of the karyotyping analysis, the SNP array identified additional 6.1% (69/1131) abnormal CNVs. No significant difference was found in the rate of abnormal CNVs among the groups. The SNP array can fully complement conventional karyotyping in fetuses with ultrasonic soft markers, improve detection rate of chromosomal abnormalities, and affect pregnancy outcomes.
Project description:Chromosomal microarray analysis (CMA) in prenatal diagnosis detects copy number variations (CNVs) in many fetuses; however, the low penetrance and phenotypic diversity of CNVs complicate genetic counseling, resulting in limited understanding of intrauterine ultrasound phenotypes linked to CNVs. In a retrospective analysis of 25,000 cases at Fujian Maternal and Child Health Hospital, 18,000 pregnant women underwent SNP array testing (December 2015 to June 2023).
Project description:BackgroundSome ultrasonic soft markers can be found during ultrasound examination. However, the etiology of the fetuses with ultrasonic soft markers is still unknown. This study aimed to evaluate the genetic etiology and clinical value of chromosomal abnormalities and copy number variations (CNVs) in fetuses with ultrasonic soft markers.MethodsAmong 1131 fetuses, 729 had single ultrasonic soft marker, 322 had two ultrasonic soft markers, and 80 had three or more ultrasonic soft markers. All fetuses underwent conventional karyotyping, followed by single nucleotide polymorphism (SNP) array analysis.ResultsAmong 1131 fetuses with ultrasonic soft markers, 46 had chromosomal abnormalities. In addition to the 46 fetuses with chromosomal abnormalities consistent with the results of the karyotyping analysis, the SNP array identified additional 6.1% (69/1131) abnormal CNVs. The rate of abnormal CNVs in fetuses with ultrasonic soft marker, two ultrasonic soft markers, three or more ultrasonic soft markers were 6.2%, 6.2%, and 5.0%, respectively. No significant difference was found in the rate of abnormal CNVs among the groups.ConclusionsGenetic abnormalities affect obstetrical outcomes. The SNP array can fully complement conventional karyotyping in fetuses with ultrasonic soft markers, improve detection rate of chromosomal abnormalities, and affect pregnancy outcomes.
Project description:The aim of the study was to assess the diagnostic potential of SNP-based chromosomal microarray analysis for detecting pathogenic copies number variations (CNVs) in fetuses with a normal karyotype, in which an increase in the nuchal translucence of >2.5 mm was detected by ultrasound at a gestational age of 11 weeks to 13 weeks 6 days.Materials and methodsThe study included 225 pregnant women who underwent invasive prenatal diagnostic procedures following the detection of an isolated thickening of the fetal nuchal fold. The fetal material obtained was examined using a cytogenetic test; if a normal karyotype was confirmed, chromosomal microarray analysis was performed as a second-line test.ResultsPathogenic CNVs were detected in 22 of 225 fetuses (9.8%) with a normal karyotype. Of these 22 fetuses, pathogenic CNVs not classified as syndromes were detected in 14 cases (63.6%), and those previously described as syndromes - in 8 cases (36.4%). In 9 fetuses (41%), CNVs in two non-homologous chromosomes were determined; these findings indicated a high likelihood of carrying balanced translocations in the parents. Indeed, when analyzing the parent's karyotype, in 8 out of 9 couples, balanced translocations were found in one of the parents.ConclusionUsing chromosomal microarray analysis in fetuses with a thickened nuchal fold makes it possible to increase the ability to detect chromosomal imbalances, including those caused by pathological meiotic segregation of parental reciprocal translocation.
Project description:BackgroundCongenital gastrointestinal obstruction (CGIO) mainly refers to the stenosis or atresia of any part from the esophagus to the anus and is one of the most common surgical causes in the neonatal period. The concept of genetic factors as an etiology of CGIO has been accepted, but investigations about CGIO have mainly focused on aneuploidy, and the focus has been on duodenal obstruction. The objective of this study was to evaluate the risk of chromosome aberrations (including numeric and structural aberrations) in different types of CGIO. A second objective was to assess the risk of abnormal CNVs detected by copy number variation sequencing (CNV-seq) in fetuses with different types of CGIO.MethodsData from pregnancies referred for invasive testing and CNV-seq due to sonographic diagnosis of fetal CGIO from 2015 to 2020 were obtained retrospectively from the computerized database. The rates of chromosome aberrations and abnormal CNV-seq findings for isolated CGIOs and complicated CGIOs and different types of CGIOs were calculated.ResultsOf the 240 fetuses with CGIO that underwent karyotyping, the detection rate of karyotype abnormalities in complicated CGIO was significantly higher than that of the isolated group (33.8% vs. 10.8%, p < 0.01). Ninety-three cases with normal karyotypes further underwent CNV-seq, and CNV-seq revealed an incremental diagnostic value of 9.7% over conventional karyotyping. In addition, the incremental diagnostic yield of CNV-seq analysis in complicated CGIOs (20%) was higher than that in isolated CGIOs (4.8%), and the highest prevalence of pathogenic CNVs/likely pathogenic CNVs was found in the duodenal stenosis/atresia group (17.5%), followed by the anorectal malformation group (15.4%). The 13q deletion, 10q26 deletion, 4q24 deletion, and 2p24 might be additional genetic etiologies of duodenal stenosis/atresia.ConclusionsThe risk of pathogenic chromosomal abnormalities and CNVs increased in the complicated CGIO group compared to that in the isolated CGIO group, especially when fetuses presented duodenal obstruction (DO) and anorectal malformation. CNV-seq was recommended to detect submicroscopic chromosomal aberrations for DO and anorectal malformation when the karyotype was normal. The relationship between genotypes and phenotypes needs to be explored in the future to facilitate prenatal diagnosis of fetal CGIO and yield new clues into their etiologies.
Project description:BackgroundChromosomal segmental copy number variation (CNV) has been recently recognized as a very important source of genetic variability. Some CNV loci involve genes or conserved regulatory elements. Compelling evidence indicates that CNVs impact genome functions. The chicken is a very important farm animal species which has also served as a model for biological and biomedical research for hundreds of years. A map of CNVs in chickens could facilitate the identification of chromosomal regions that segregate for important agricultural and disease phenotypes.ResultsNinety six CNVs were identified in three lines of chickens (Cornish Rock broiler, Leghorn and Rhode Island Red) using whole genome tiling array. These CNVs encompass 16 Mb (1.3%) of the chicken genome. Twenty six CNVs were found in two or more animals. Whereas most small sized CNVs reside in none coding sequences, larger CNV regions involve genes (for example prolactin receptor, aldose reductase and zinc finger proteins). These results suggest that chicken CNVs potentially affect agricultural or disease related traits.ConclusionAn initial map of CNVs for the chicken has been described. Although chicken genome is approximately one third the size of a typical mammalian genome, the pattern of chicken CNVs is similar to that of mammals. The number of CNVs detected per individual was also similar to that found in dogs, mice, rats and macaques. A map of chicken CNVs provides new information on genetic variations for the understanding of important agricultural traits and disease.
Project description:ObjectivesThe congenital diaphragmatic hernia (CDH), characterized by malformation of the diaphragm and lung hypoplasia, is a common and severe birth defect that affects around 1 in 4000 live births. However, the etiology of most cases of CDH remains unclear. The aim of this study was to perform a retrospective analysis of copy number variations (CNVs) using a high-resolution array comparative genomic hybridization (array-CGH) in a cohort of fetuses and newborns with CDH.MethodsForty seven fetuses and newborns with either isolated or syndromic CDH were analyzed by oligonucleotide-based array-CGH Agilent 180K technique.ResultsA mean of 10.2 CNVs was detected by proband with a total number of 480 CNVs identified based on five categories: benign, likely benign, of uncertain signification, likely pathogenic, and pathogenic. Diagnostic performance was estimated at 19.15% (i.e., likely pathogenic and pathogenic CNVs) for both CDH types. We identified 11 potential candidate genes: COL25A1, DSEL, EYA1, FLNA, MECOM, NRXN1, RARB, SPATA13, TJP2, XIRP2, and ZFPM2.ConclusionWe suggest that COL25A1, DSEL, EYA1, FLNA, MECOM, NRXN1, RARB, SPATA13, TJP2, XIRP2, and ZFPM2 genes may be related to CDH occurrence. Thus, this study provides a possibility for new methods of a positive diagnosis.