Project description:To determine transcriptional changes caused by the overexpression of wild-type and mutant TMEM43 and to gain insights into the mechanisms responsible for the phenotype of arrhythmogenic cardiomyopathy We performed RNA-sequencing in adult zebrafish hearts
Project description:After heart injury, adult zebrafish can perfectly regenerate its heart without any scar tissue left. We performed 100bp*2, paired-end, strand-specific, polyA-positive RNA-seq on hearts from 2 group of adult zebrafish, in which one was sham group and the other 7 days after heart tip amputation (7dpa). We found pathways involving hydrogen peroxidate related functions significantly up-regulated in 7dpa group, indicating its role in heart regeneration. RNA-seq: hearts from sham or 7dpa adult zebrafish
Project description:We report global RNA expression profiles from whole zebrafish hearts 24 hours after ventricle amputation. Zebrafish were exposed to atropine or water following surgery. 15 zebrafish hearts were pooled per microarray chip. Amputated hearts of zebrafish exposed to atropine was compared to hearts of zebrafish exposed to water.
Project description:After heart injury, adult zebrafish can perfectly regenerate its heart without any scar tissue left. We performed 100bp*2, paired-end, strand-specific, polyA-positive RNA-seq on hearts from 2 group of adult zebrafish, in which one was sham group and the other 7 days after heart tip amputation (7dpa). We found pathways involving hydrogen peroxidate related functions significantly up-regulated in 7dpa group, indicating its role in heart regeneration.
Project description:Adult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days post-amputation) time-point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.
Project description:Increased COUP-TFII levels are found in human dilated cardiomyopathy as well as in mouse models that develop cardiomyopathy. COUP-TFII overexpression in adult mouse hearts caused ventricular dilation and compromised cardiac functions. To gain insights on COUP-TFII’s effect in hearts, we identified the molecular profile of COUP-TFII overexpressing hearts through microarray analysis. The result may shred light on molecular mechanisms that mediate development of dilated cardiomyopathy.