Project description:With this study, we wanted to investigate degradation of human milk oligosaccharides and the subsequent cross-feeding interactions of a complex bacterial community that resembles the gut microbiota of pre-weaned vaginally-born breastfed infants.
Project description:The aim of this study was to investigate whether long term intake of pea fiber would improve colonic barrier, bacterial profile and alter colonic gene expression using DNA microarray. Fifty weaned pigs were randomly allocated into 2 groups receiving control and fibrous diet with inclusion of pea fiber from weaning age until d 160. The two diets had similar nutrient levels. Pigs fed pea fiber diet (PF diet) had markedly decreased overall average daily feed intake (ADFI) and Feed:Gain in growing and finishing period (P<0.05). In addition, long term intake of PF diet induced deeper crypt (+50 %, P<0.05), increased protein expression of colonic mucin and sIgA (+13~16 %, P<0.05). Resulting from the increased lactobacillus content (P<0.05), moreover, pigs fed PF diet had significantly higher concentration of colonic total short chain fatty acid (SCFA) and acetic acid. DNA microarray results indicated that feeding PF diet induced alterations in the expression of colonic cancer, immune response and lipid metabolism-related genes, as well as genes involved in signal pathway such as intestinal immune network for IgA production, PPAR signaling pathway and nutrient metabolism-related pathways. Collectively, our results suggested that long term intake of PF diet would improve colonic health via altering colonic bacteria profile, colonic barriers, immune and metabolism related protein or gene expressions. A total of 50 weaned pigs (Duroc×Landrace×Yorkshire, initial body weight: 7.2±0.5 kg) were randomly allocated to 2 groups with 5 pens each group and 5 pig each pen. Pigs were fed control (Control) and fibrous diets (10~20 % inclusion of pea fiber, PF) from weaning at 28 day to 160 day-old-age, which is subjected to phase feeding by weaning diet (weaning to d 30 post-weaning), growing diet (d 30~90 postweaning) and finishing diet (d 90~160 postweaning) according to their physiological stage. At d 160 postweaning, four pigs each group were selected to be slaughtered for collection of colonic tissues and DNA microarray was applied to the colonic tissues for analysis of gene expression.
Project description:The common practise of artificially rearing some lambs from prolific meat breeds of sheep constitutes a welfare issue due to increased mortality rates and negative health issues. In this multidisciplinary study, we investigated the possible short and mid-term advantages of artificially feeding fresh ewe’s milk instead of commercial milk replacer on lambs’ growth, health and welfare. Romane lambs were either separated from their mothers on D3 and fed with Lacaune ewes’ milk (LAC, n=13) or milk replacer (REP, N=15), or they were reared by their mothers (MOT, n=15). On D45, they were weaned, gathered in single sex groups until the end of the study on D150. Lamb performance and biomarkers of overall health were assessed by measuring: growth, dirtiness of the perianal area, enteric pathogens in the faeces, total antioxidant status and redox status assessed by plasma reduced (GSH)/oxidized (GSSG) glutathione ratio, and immune response after vaccination against chlamydiosis. As an exploratory approach, blood cell transcriptomic profiles were also investigated. Last, Qualitative Behaviour Assessment was performed as an integrated welfare criteria. LAC and REP never differed in their average daily gain but grew less than MOT lambs in the early suckling period and just after weaning. No effect was detected afterwards. On D30, LAC and REP lambs had lower total antioxidant and higher redox status than MOT lambs but did not differ among themselves. LAC and MOT had a cleaner perianal area than REP lambs on D21, while faecal pathogen infection did not vary between the treatment groups. After vaccination, LAC also had a stronger immune response on D90 compared to REP lambs. Transcriptome analysis performed on D150 showed differential gene expression, mainly in relation to inflammatory, immune and cell cycle response, between male lambs of the LAC group and those of the MOT and REP groups. Based on Qualitative Behaviour Assessment, LAC lambs never differed from MOT lambs in their general activity and varied from REP only on D21; REP lambs were always more agitated than MOT lambs. In conclusion, artificial milk feeding impaired early growth rate, health, and emotional state mainly during the milk feeding period and at weaning. Feeding artificially reared lambs with fresh ewe's milk partly mitigated some of the negative effects induced by milk replacer but without achieving the full benefit of being reared by the mother.
2020-11-23 | GSE131763 | GEO
Project description:Colonic microbiota of weaned piglets
| PRJNA791003 | ENA
Project description:colonic microbiota in weaned piglets
Project description:The aim of this study was to investigate whether long term intake of pea fiber would improve colonic barrier, bacterial profile and alter colonic gene expression using DNA microarray. Fifty weaned pigs were randomly allocated into 2 groups receiving control and fibrous diet with inclusion of pea fiber from weaning age until d 160. The two diets had similar nutrient levels. Pigs fed pea fiber diet (PF diet) had markedly decreased overall average daily feed intake (ADFI) and Feed:Gain in growing and finishing period (P<0.05). In addition, long term intake of PF diet induced deeper crypt (+50 %, P<0.05), increased protein expression of colonic mucin and sIgA (+13~16 %, P<0.05). Resulting from the increased lactobacillus content (P<0.05), moreover, pigs fed PF diet had significantly higher concentration of colonic total short chain fatty acid (SCFA) and acetic acid. DNA microarray results indicated that feeding PF diet induced alterations in the expression of colonic cancer, immune response and lipid metabolism-related genes, as well as genes involved in signal pathway such as intestinal immune network for IgA production, PPAR signaling pathway and nutrient metabolism-related pathways. Collectively, our results suggested that long term intake of PF diet would improve colonic health via altering colonic bacteria profile, colonic barriers, immune and metabolism related protein or gene expressions.