Project description:The cranial neural crest plays a fundamental role in orofacial development and morphogenesis. As a pluripotent and dynamic cell population, the cranial neural crest is undergoing vast transcriptional alterations throughout embryogenesis and the formation of facial structures. These transcriptional changes are regulated by several transcription factors and remodeling complexes. Previously, we revealed the relevance of the Ep400/Kat5 histone acetyltransferase complex in the cranial neural crest and showed that the knockout of Ep400 causes neural crest-related malformations such as orofacial clefting. Furthermore, a case study identified three patients carrying missense mutations in Kat5 who showed severe mental impairments as well as orofacial clefts.2 The exact molecular causes and mechanisms, however, are still unknown. In this study we selectively knocked out Ep400 or Kat5 in the murine cranial neural crest cell line O9-1 to examine its roles in neural crest biology. To understand the regulatory effects of Ep400 and Kat5, knockout neural crest cells were investigated via bulk RNA sequencing to unravel transcriptomic changes in the affected cells. Bioinformatic analyses hinted at the regulation of major cellular functions such as proliferation, ATP generation and protein synthesis by the Ep400/Kat5 complex. Reduced proliferation was confirmed by crystal violet staining, phospho-histone H3 staining and the determination of mitotic cells with condensed chromatin in vitro. We did not detect increased apoptosis in the knockout cell lines. The energetic profile of the cells was investigated by Seahorse technology. The ATP-rate assay showed a decreased glycolytic activity in Ep400- or Kat5-deficient cells. An O-propargyl-puromycin (OPP) Click-iT assay revealed a significant reduction in protein synthesis. To verify in vivo the discovered in vitro effects, Ep400 and Kat5 were selectively ablated in cranial neural crest using Wnt1-Cre in transgenic mice. The knockout of each of the subunits resulted in severe craniofacial malformations from E12.5 onwards. At E10.5 a significant reduction in neural crest-derived tissue and proliferation rate was evident. The strong defect in orofacial structures of mice lacking Kat5 or Ep400 completely correspond to the milder orofacial malformations in patients carrying heterozygous missense mutations. Our results furthermore argue that changes of metabolism, protein synthesis and proliferation in cranial neural crest cells are responsible for the orofacial defects observed in patients.
Project description:Van der Woude syndrome (VWS) is an autosomal dominant malformation syndrome characterized by orofacial clefting (OFC) and lower lip pits. The clinical presentation of VWS is variable and can present as an isolated OFC, making it difficult to distinguish VWS cases from individuals with non-syndromic OFCs. About 70% of causal VWS mutations occur in IRF6, a gene that is also associated with non-syndromic OFCs. Screening for IRF6 mutations in apparently non-syndromic cases has been performed in several modestly sized cohorts with mixed results. In this study, we screened 1521 trios with presumed non-syndromic OFCs to determine the frequency of causal IRF6 mutations. We identified seven likely causal IRF6 mutations, although a posteriori review identified two misdiagnosed VWS families based on the presence of lip pits. We found no evidence for association between rare IRF6 polymorphisms and non-syndromic OFCs. We combined our results with other similar studies (totaling 2472 families) and conclude that causal IRF6 mutations are found in 0.24-0.44% of apparently non-syndromic OFC families. We suggest that clinical mutation screening for IRF6 be considered for certain family patterns such as families with mixed types of OFCs and/or autosomal dominant transmission.
Project description:Van der Woude Syndrome is the most common form of syndromic orofacial clefting, accounting for 2% of all cases, and has the phenotype that most closely resembles the more common non-syndromic forms. The syndrome has an autosomal dominant hereditary pattern with variable expressivity and a high degree of penetrance with cardinal clinical features of lip pits with a cleft lip, cleft palate, or both. This case report describes van der Woude syndrome in a 19 year old male patient with a specific reference to the various aspects of this condition, as clinical appearance, etiological factors (genetic aspects), differential diagnosis, investigative procedures and management. Key words:Cleft palate, cleft lip, lip pits, van der Woude syndrome, syndromic clefting.
Project description:We report transcriptional profiles of 4hpf zebrafish embryos from either wild-type or a CRISPR-targeted irf6 loss-of-function mutant. Irf6 is a transcription factor implicated in syndromic and nonsyndromic forms of cleft palate. To define critical genes involved in palate development, we harvested RNA from irf6-/- embryos before an embryonic lethal stage in zebrafish and carried out RNA-sequencing and subsequent analysis. We identify top differentially expressed genes that include genes involved in periderm development, genes expressed in developmental processes (such as Fgfs and Wnt-pathway genes), and genes involved in orofacial clefting. We identify a crucial gene esrp1 that we chose for further validation and downstream analysis.
Project description:This SuperSeries is composed of the SubSeries listed below. A valuable approach to understand how individual and population genetic differences can predispose to disease is to assess the impact of genetic variants on cellular functions (e.g., gene expression) of cell and tissue types related to pathological states. To understand the genetic basis of nonsyndromic cleft lip with or without cleft palate (NSCL/P) susceptibility, a complex and highly prevalent congenital malformation, we searched for genetic variants with a regulatory role in a disease-related tissue, the lip muscle (orbicularis oris muscle [OOM]), of affected individuals. From 46 OOM samples, which are frequently discarded during routine corrective surgeries on patients with orofacial clefts, we derived mesenchymal stem cells and correlated the individual genetic variants with gene expression from these cultured cells. Through this strategy, we detected significant cis-eQTLs (i.e., DNA variants affecting gene expression) and selected a few candidates to conduct an association study in a large Brazilian cohort (624 patients and 668 controls). This resulted in the discovery of a novel susceptibility locus for NSCL/P, rs1063588, the best eQTL for the MRPL53 gene, where evidence for association was mostly driven by the Native American ancestry component of our Brazilian sample. MRPL53 (2p13.1) encodes a 39S protein subunit of mitochondrial ribosomes and interacts with MYC, a transcription factor required for normal facial morphogenesis. Our study illustrates not only the importance of sampling admixed populations but also the relevance of measuring the functional effects of genetic variants over gene expression to dissect the complexity of disease phenotypes.
Project description:Cleft lip with or without cleft palate (CL/P) is a common birth defect with a complex, heterogeneous etiology. It is well-established that both common and rare sequence variants contribute to the formation of CL/P, however, the contribution of copy number variants (CNVs) to cleft formation remains relatively understudied. To fill this knowledge gap, we conducted a large-scale comparative analysis of genome-wide CNV profiles of 869 individuals from the Philippines and 233 individuals of European ancestry with CL/P with three primary goals: first, to evaluate whether differences in CNV number, amount of genomic content, or amount of coding genomic content existed within clefting subtypes; second, to assess whether CNVs in our cohort overlapped with known Mendelian clefting loci; and third, to identify unestablished Mendelian clefting genes. Significant differences in CNVs across cleft types or in individuals with non-syndromic versus syndromic clefts were not observed, however, several CNVs in our cohort overlapped with known syndromic and non-syndromic Mendelian clefting loci. Moreover, employing a filtering strategy relying on population genetics data that rare variants are on the whole more deleterious than common variants, we identify several CNV-associated gene losses likely driving non-syndromic clefting phenotypes. By prioritizing genes deleted at a rare frequency across multiple individuals with clefts yet enriched in our case cohort compared to controls, we identify COBLL1, RIC1, and ARHGEF38 as clefting genes. CRISPR/Cas9 mutagenesis of these genes in Xenopus laevis and Danio rerio yielded craniofacial dysmorphologies, including clefts analogous to those seen in human clefting disorders.