Project description:The gut microbiota is closely associated with digestion, metabolism, immunity, and host health. The imbalance of the microbial community in livestock directly affects their well-being and, consequently, productivity. The composition and diversity of the gut microbiota are influenced not only by host genetics but also by environmental factors such as the microbial complexity of the rearing environment, feeds, and antibiotics. Here, we focus on the comparison of gut microbial communities in miniature pigs developed for xenotransplantation in specific pathogen-free (SPF) and conventional (non-SPF) facilities. To identify the disparities in gut microbial composition and functionality between these two environments, 16S RNA metagenome sequencing was conducted using fecal samples. The results revealed that the non-SPF pigs had higher gut microbiota diversity than the SPF pigs. The genera Streptococcus and Ruminococcus were more abundant in SPF pigs than in non-SPF pigs. Blautia, Bacteroides, and Roseburia were exclusively observed in SPF pigs, whereas Prevotella was exclusively found in non-SPF pigs. Carbohydrate and nucleotide metabolism, as well as environmental information processing, were predicted to be enriched in SPF pigs. In addition, energy and lipid metabolism, along with processes related to genetic information, cellular communication, and diseases, were predicted to be enriched in non-SPF pigs. This study makes an important contribution to elucidating the impact of environments harboring a variety of microorganisms, including pathogens, on the gut microbiota of miniature pigs. Furthermore, we sought to provide foundational data on the characteristics of the gut microbiota in genetically modified pigs, which serve as source animals for xenotransplantation.
2024-04-22 | GSE264183 | GEO
Project description:fecal metagenome of growing pigs
Project description:Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of this gram-negative bacteria in such pigs is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we have initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n=40) was inoculated with ST and the peripheral blood and feces were collected between 2 and 20 days post-inoculation. Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. The global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip?analysis of peripheral blood RNA at day 0 and day 2 post-inoculation. Forty pigs (n=40) was inoculated with ST. Four low shedding (LS) pigs and six persistent shedding (PS) pigs were identified. Transcriptom of peripheral blood collected at 0 and 2 dpi were identified by Affymetrix Genechip analysis.
Project description:Salmonella species infect many vertebrate species, and pigs colonized with Salmonella enterica serovar Typhimurium (ST) are usually asymptomatic, making detection of these Salmonella-carrier pigs difficult. The variable fecal shedding of this gram-negative bacteria in such pigs is an important cause of foodborne illness and zoonotic disease. To investigate gene pathways and biomarkers associated with the variance in Salmonella shedding following experimental inoculation, we have initiated the first analysis of the whole blood transcriptional response induced by Salmonella. A population of pigs (n=40) was inoculated with ST and the peripheral blood and feces were collected between 2 and 20 days post-inoculation. Two groups of pigs with either low shedding (LS) or persistent shedding (PS) phenotypes were identified. The global transcriptional changes in response to ST inoculation were identified by Affymetrix Genechip?analysis of peripheral blood RNA at day 0 and day 2 post-inoculation.