Project description:The study identified a total of 3169 gene transcripts (98.4% coverage). By comparing the anaerobic versus aerobic H2-oxidizing At. ferrooxidans cultures, a total of 371 DEGs were found. Of these, 168 DEGs were increased significantly during the aerobic growth on H2 (with O2 as the sole electron acceptor), while 203 DEGs increased significantly during anaerobic growth on H2 (with Fe3+ as the sole electron acceptor).
Project description:Ammonia-oxidizing archaeal (AOA) amoA diversity and relative abundance in Gulf of Mexico sediments (0-2 cm) were investigated using a functional gene microarray; a two color array with a universal internal standard
2013-03-01 | GSE42286 | GEO
Project description:metagenome analysis for nitrite-oxidizing enrichment cultures
Project description:Salt marshes provide many key ecosystem services that have tremendous ecological and economic value. One critical service is the removal of fixed nitrogen from coastal waters, which limits the negative effects of eutrophication resulting from increased nutrient supply. Nutrient enrichment of salt marsh sediments results in higher rates of nitrogen cycling and, commonly, a concurrent increase in the flux of nitrous oxide, an important greenhouse gas. Little is known, however, regarding controls on the microbial communities that contribute to nitrous oxide fluxes in marsh sediments. To address this disconnect, we generated microbial community profiles as well as directly assayed nitrogen cycling genes that encode the enzymes responsible for overall nitrous oxide flux from salt marsh sediments. We hypothesized that communities of microbes responsible for nitrogen transformations will be structured by nitrogen availability. Taxa that respond positively to high nitrogen inputs may be responsible for the elevated rates of nitrogen cycling processes measured in fertilized sediments. Our data show that, with the exception of ammonia-oxidizing archaea, the community composition of organisms responsible for production and consumption of nitrous oxide was altered under nutrient enrichment. These results suggest that elevated rates of nitrous oxide production and consumption are the result of changes in community structure, not simply changes in microbial activity.
Project description:Bathymodiolin mussels are a group of bivalves associated with deep-sea reducing habitats, such as hydrothermal vents and cold seeps. These mussels usually engage in an obligatory symbiosis with sulfur and/or methane oxidizing Gammaproteobacteria. In addition to these bacteria, Bathymodiolus heckerae that inhabit gas and oil seeps in Campeche Bay, the southern Gulf of Mexico, host bacteria phylogenetically with the Cycloclasticus genus. We recently discovered the capability for short-chain alkane degradation in draft genomes of symbiotic Cycloclasticus. With proteomics, we investigated whether the genes required for this process are expressed by the symbionts.