Project description:Background: Primary knee osteoarthritis (KOA) is a heterogeneous disease with clinical and molecular contributors. Biofluids contain microRNAs and metabolites that can be measured by omic technologies. Deep learning captures complex non-linear associations within multimodal data but, to date, has not been used for multi-omic-based endotyping of KOA patients. We developed a novel multimodal deep learning framework for clustering of multi-omic data from three subject-matched biofluids to identify distinct KOA endotypes and classify one-year post-total knee arthroplasty (TKA) pain/function responses. Materials and Methods: In 414 KOA patients, subject-matched plasma, synovial fluid and urine were analyzed by microRNA sequencing or metabolomics. Integrating 4 high-dimensional datasets comprising metabolites from plasma (n=151 features), along with microRNAs from plasma (n=421), synovial fluid (n=930), or urine (n=1225), a multimodal deep learning variational autoencoder architecture with K-means clustering was employed. Features influencing cluster assignment were identified and pathway analyses conducted. An integrative machine learning framework combining 4 molecular domains and a clinical domain was then used to classify WOMAC pain/function responses post-TKA within each cluster. Findings: Multimodal deep learning-based clustering of subjects across 4 domains yielded 3 distinct patient clusters. Feature signatures comprising microRNAs and metabolites across biofluids included 30, 16, and 24 features associated with Clusters 1-3, respectively. Pathway analyses revealed distinct pathways associated with each cluster. Integration of 4 multi-omic domains along with clinical data improved response classification performance, with Cluster 3 achieving AUC=0·879 for subject pain response classification and Cluster 2 reaching AUC=0·808 for subject function response, surpassing individual domain classifications by 12% and 15% respectively. Interpretation: We have developed a deep learning-based multimodal clustering model capable of integrating complex multi-fluid, multi-omic data to assist in KOA patient endotyping and test outcome response to TKA surgery.
Project description:In order to provide multi-omic resolution to human retinal organoid developmental dynamics, we performed scRNA-seq and scATAC-seq from the same cell suspension across a time course (6-46 weeks) of human retinal organoid development. This data set covers all the retinal organoid scRNA-seq data generated from IMR90 and409B2-iCas9 cell lines.
Project description:In order to provide multi-omic resolution to human retinal organoid developmental dynamics, we performed scRNA-seq and scATAC-seq from the same cell suspension across a time course (6-46 weeks) of human retinal organoid development. This data set covers all the retinal organoid scATAC-seq data generated from IMR90 and 409B2-iCas9 cell lines.
Project description:This study utilizes multi-omic biological data to perform deep immunophenotyping on the major immune cell classes in COVID-19 patients. 10X Genomics Chromium Single Cell Kits were used with Biolegend TotalSeq-C human antibodies to gather single-cell transcriptomic, surface protein, and TCR/BCR sequence information from 254 COVID-19 blood draws (a draw near diagnosis (-BL) and a draw a few days later (-AC)) and 16 healthy donors.