Project description:We cultured MCF10a-Snail-ER cells and induced EMT initiation with tamoxifen. A matched sequencing of their PolyA RNA was performed, using Illumina and direct RNA Oxford Nanopore sequencing technologies. Both generated datasets supported the development of hybrid bioinformatics tools.
Project description:DNA WGS Long Read Sequence (PromethION) for manuscript titled: "Performance of Somatic Structural Variant Calling in Lung Cancer using Oxford Nanopore Sequencing Technology"
Project description:DNA WGS Short Read Sequence (Illumina NovaSeq) for manuscript titled: "Performance of Somatic Structural Variant Calling in Lung Cancer using Oxford Nanopore Sequencing Technology"
Project description:State-of-the-art algorithms for m6A detection and quantification via nanopore direct RNA sequencing have been continuously developed, little is known about their capacities and limitations, which makes a comprehensive assessment in urgent need. Therefore, we performed comprehensive benchmarking of 10 computational tools relying on current-based and base-calling “errors” strategies for m6A detection by nanopore sequencing.
Project description:5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) are modified versions of cytosine in DNA with roles in regulating gene expression. Using whole genomic DNA from mouse cerebellum, we have benchmarked 5mC and 5hmC detection by Oxford Nanopore Technologies sequencing against other standard techniques. In addition, we assessed the ability of duplex base-calling to study strand asymmetric modification. Nanopore detection of 5mC and 5hmC is accurate relative to compared techniques and opens new means of studying these modifications. Strand asymmetric modification is widespread across the genome but reduced at imprinting control regions and CTCF binding sites in mouse cerebellum. This study demonstrates the unique ability of nanopore sequencing to improve the resolution and detail of cytosine modification mapping.
Project description:We report the direct RNA sequencing of HEK293 and a primary human mammary epithelial cell (HMEC) line using Oxford Nanopore based sequencing. Using this data, we built an algorithm to detect m6A modifications within the DRACH motif context. Evaluation of m6A sites was carried out with HEK METTL3 knockdown and HMEC ALKBH5 over expression cell lines.
Project description:Whole-genome bisulfite sequencing (WGBS) is currently the gold standard for DNA methylation (5-methylcytosine, 5mC) profiling, however the destructive nature of sodium bisulfite results in DNA fragmentation and subsequent biases in sequencing data. Such issues have led to the development of bisulfite-free methods for 5mC detection. Nanopore sequencing is a long read non-destructive approach that directly analyzes DNA and RNA fragments in real time. Recently, computational tools have been developed that enable base-resolution detection of 5mC from Oxford Nanopore sequencing data. In this chapter we provide a detailed protocol for preparation, sequencing, read assembly and analysis of genome-wide 5mC using Nanopore sequencing technologies.