Project description:The mastication stimuli during the weaning period can enhance the learning ability of rats by increasing the dendrite branches of hippocampal CA1 neurons and by regulating genes related to dendrite growth. Using DNA microarray analysis, differentially expressed genes were enriched in functional terms related to dendrite growth and included the Igf2, RhoA, and Rho GEF genes, most of which were upregulated in the chow diet group.
Project description:Mastication stimuli are known to relieve senile dementia in human and animal studies. However, few studies have focused on its effect on weaning-stage animals and the underlying molecular processes. In this study, 3-week-old male rats were raised on a powdered (P-group) or chow (C-group) diet for 8 days, and their behavior was examined using the Y-maze and novel object recognition tests. In the Y-maze test, the C-group rats showed a larger alternation ratio than the P-group rats. In the novel object recognition test, the C-group rats exhibited a significantly larger discrimination index for novel objects than for familiar objects, but the P-group rats did not. We then compared the hippocampal neuron morphology and transcriptome between the groups. C-group rats exhibited larger dendrite branch numbers in the apical dendrites of pyramidal cells in the cornu ammonis 1 (CA1) region and a larger spine density in the basal dendrites of CA1 neurons than the P-group rats. Using DNA microarray analysis, we identified 621 (P < C) and 96 (P > C) genes that were differentially expressed between the groups. These genes were enriched in functional terms related to dendrite growth and included the Igf2, RhoA, and Rho GEF genes, most of which were upregulated in the C-group. These results suggest that the mastication stimuli during the weaning period can enhance the learning ability of rats by increasing the dendrite branches of hippocampal CA1 neurons and by regulating genes related to dendrite growth.
Project description:MicroRNAs (miRNAs) play important roles in intestinal diseases; however, the role of miRNAs during weaning stress is unknown. In our study, six jejunal small RNA libraries constructed from weaning piglets at 1, 4 and 7 d after weaning (libraries W1, W4 and W7, respectively) and from suckling piglets on the same days as the weaning piglets (libraries S1, S4 and S7, respectively) were sequenced using Solexa high-throughput sequencing technology. Overall, 260 known swine miRNAs and 317 novel candidate miRNA precursors were detected in the six libraries. The results revealed that 16 differentially expressed miRNAs were found between W1 and S1; 98 differentially expressed miRNAs were found between W4 and S4 (ssc-mir-146b had the largest difference and ssc-mir-215 had the highest expression level); and 22 differentially expressed miRNAs were found between W7 and S7. Sequencing miRNA results were validated using RT-qPCR. Approximately 12,819 miRNA-mRNA interactions corresponding to 4,250 target genes were predicted. The biological analyses revealed that the differentially expressed miRNAs regulated small intestinal metabolism, stressful responses, cellular and immune functions and miRNA biosynthesis in piglets. Therefore, the small intestine miRNA transcriptome was significantly different between weaning and suckling piglets; the difference varied with the number of days after weaning. six small RNA libraries from weaning piglets at 1, 4 and 7 d after weaning and from suckling piglets on the same days as the weaning piglets, respectively. For every small RNA library construction, 4 biological total RNA samples isolated from each treatment and control were separately pooled with equal contribution.
Project description:MicroRNAs (miRNAs) play important roles in intestinal diseases; however, the role of miRNAs during weaning stress is unknown. In our study, six jejunal small RNA libraries constructed from weaning piglets at 1, 4 and 7 d after weaning (libraries W1, W4 and W7, respectively) and from suckling piglets on the same days as the weaning piglets (libraries S1, S4 and S7, respectively) were sequenced using Solexa high-throughput sequencing technology. Overall, 260 known swine miRNAs and 317 novel candidate miRNA precursors were detected in the six libraries. The results revealed that 16 differentially expressed miRNAs were found between W1 and S1; 98 differentially expressed miRNAs were found between W4 and S4 (ssc-mir-146b had the largest difference and ssc-mir-215 had the highest expression level); and 22 differentially expressed miRNAs were found between W7 and S7. Sequencing miRNA results were validated using RT-qPCR. Approximately 12,819 miRNA-mRNA interactions corresponding to 4,250 target genes were predicted. The biological analyses revealed that the differentially expressed miRNAs regulated small intestinal metabolism, stressful responses, cellular and immune functions and miRNA biosynthesis in piglets. Therefore, the small intestine miRNA transcriptome was significantly different between weaning and suckling piglets; the difference varied with the number of days after weaning.
Project description:Mastication stimuli regulate the heart beat rate through the rhythmic regulation by hypothalamic-autonomic system in the weaning stage rat