Project description:As one of the key RNA regulation pathway, the NMD pathway plays a key role in the early brain development. The investigation of UPF1 specific binding transcript in mouse NPCs samples could give us a overall view of potential genes which are subjected to the NMD regulation. Among these genes we could identify how the NMD pathway shapes early mouse brian development.
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA quality control pathways serve to get rid of faulty RNAs and therefore must be able to discriminate these RNAs from those that are normal. Here we present evidence that the ATPase cycle of SF1 Helicase Upf1 is required for mRNA discrimination during Nonsense-Mediated Decay (NMD). Mutations affecting the Upf1 ATPase cycle disrupt the mRNA selectivity of Upf1, leading to indiscriminate accumulation of NMD complexes on both NMD target and non-target mRNAs. In addition, two modulators of NMD - translation and termination codon-proximal poly(A) binding protein - depend on Upf1 ATPase to limit Upf1-non-target association. Preferential ATPase-dependent dissociation of Upf1 from non-target mRNAs in vitro suggests that selective release of Upf1 contributes to the ATPase-dependence of Upf1 target discrimination. Given the prevalence of helicases in RNA regulation, ATP hydrolysis may be an underappreciated, yet widely employed, activity in target RNA discrimination. CLIP and RIP-seq against Wild Type and Mutant Upf1 in HEK293-T cell lines
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNAs. As defects in protein-RNA recognition lead to human disease, UV-crosslinking and immunoprecipitation (CLIP) of ribonuclear complexes followed by deep sequencing (-seq) is critical in constructing protein-RNA maps to expand our understanding of RBP function. However, current CLIP protocols are technically demanding and involve low complexity libraries that yield squandered sequencing of PCR duplicates and high experimental failure rates. To enable truly large-scale implementation of CLIP-seq, we have developed an enhanced CLIP methodology (eCLIP) that features a decrease of ~10 cycles of requisite amplification with a concomitant >60% decrease in discarded PCR duplicate reads, while maintaining the ability to identify RNA binding with single-nucleotide resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP also dramatically improves specificity in discovery of authentic binding sites. To demonstrate that eCLIP enables large-scale and robust profiling of RBPs, 102 eCLIP experiments in biological duplicate for a diverse collection of 74 RBPs in HepG2 and K562 cells were completed (available at https://www.encodeproject.org). We establish that eCLIP is comparable in amplification and sample requirements to ChIP-seq, and enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP experiments and RNA-centric perspectives of RBP activity.
Project description:RNA helicases are important regulators of gene expression that act by remodeling RNA secondary structures and as RNA-protein interactions. Here, we demonstrate that MOV10 has an ATP-dependent 5' to 3' in vitro RNA unwinding activity and determine the RNA-binding sites of MOV10 and its helicase mutants using PAR-CLIP. We find that MOV10 predominantly binds to 3' UTRs upstream of regions predicted to form local secondary structures and provide evidence that MOV10 helicase mutants are impaired in their ability to translocate 5' to 3' on their mRNA targets. MOV10 interacts with UPF1, the key component of the nonsense-mediated mRNA decay pathway. PAR-CLIP of UPF1 reveals that MOV10 and UPF1 bind to RNA in close proximity. Knockdown of MOV10 resulted in increased mRNA half-lives of MOV10-bound as well as UPF1-regulated transcripts, suggesting that MOV10 functions in UPF1-mediated mRNA degradation as an RNA clearance factor to resolve structures and displace proteins from 3' UTRs. Flp-In T-REx HEK293 cells expressing FLAG/HA-tagged MOV10 WT, MOV10 K530A, MOV10 D645N and UPF1 were sequenced. mRNA half-life data under GSE56751.
Project description:Human pluripotent stem cells (hPSCs) require precise control of post-transcriptional RNA networks to maintain proliferation and survival. Using a recently developed enhanced UV crosslinking and immunoprecipitation (eCLIP) approach, we identify RNA targets of the IMP/IGF2BP family of RNA-binding proteins in hPSCs. At the broad region- and binding site-level IMP1 and IMP2 show reproducible binding to a large and overlapping set of 3'UTR-enriched targets. RNA Bind-N-Seq applied to recombinant full-length IMP1 and IMP2 reveals CA-rich motifs that are enriched in eCLIP-defined binding sites. We observe that IMP1 loss in hPSCs recapitulates IMP1 phenotypes, including a reduction in cell adhesion and an increase in cell death. For cell adhesion, in hPSCs we find IMP1 maintains levels of integrin mRNA, specifically regulating RNA stability of ITGB5. Additionally, we show IMP1 can be linked to hPSC survival via direct target BCL2. Thus, transcriptome-wide binding profiles identify hPSC targets modulating well-characterized IMP1 roles. eCLIP-seq was performed in biological replicate for IGF2BP1/IMP1 and IGF2BP2/IMP2, as well as one replicate each for IGF2BP3/IMP3, RBFOX2, and an IgG control. Each sample has a size-matched input control for analysis
Project description:RNA helicases are important regulators of gene expression that act by remodeling RNA secondary structures and as RNA-protein interactions. Here, we demonstrate that MOV10 has an ATP-dependent 5' to 3' in vitro RNA unwinding activity and determine the RNA-binding sites of MOV10 and its helicase mutants using PAR-CLIP. We find that MOV10 predominantly binds to 3' UTRs upstream of regions predicted to form local secondary structures and provide evidence that MOV10 helicase mutants are impaired in their ability to translocate 5' to 3' on their mRNA targets. MOV10 interacts with UPF1, the key component of the nonsense-mediated mRNA decay pathway. PAR-CLIP of UPF1 reveals that MOV10 and UPF1 bind to RNA in close proximity. Knockdown of MOV10 resulted in increased mRNA half-lives of MOV10-bound as well as UPF1-regulated transcripts, suggesting that MOV10 functions in UPF1-mediated mRNA degradation as an RNA clearance factor to resolve structures and displace proteins from 3' UTRs.
Project description:HEK-293 Trex cells containing stable tetracycline-inducible transgenes driving overexpression of CLIP-tagged UPF1 isoforms 1 and 2 or GFP were used for total RNA-seq. In addition, CLIP-UPF1 isoforms were affinity purified, and bound RNA was subjected to high-throughput sequencing.