Project description:Transcriptome profiling in response to water stress and rewatering of Moricandia species with C3 and C3-C4 intermediate photosynthesis.
Project description:C3-C4 intermediate Moricandia suffruticosa showed tolerance to drought and heat stresses, and high photosynthetic capacity under these abiotic stresses as comparing with C3 relative crop rapeseed (Brassica napus). In our study, systematic analysis was conducted to reveal photosynthetic difference between C3-C4 Moricandia suffruticosa and its relative C3 rapeseed from the same Brassiceae tribe. It was found that Moricandia leaf photosynthesis and anatomy were significantly changed compared to rapeseed under drought and heat stress conditions. De novo transcriptome of Moricandia was assembled by next generation sequencing, and unigenes were mapped to respective rapeseed gene locus. Then comparative transcriptome analysis was conducted in leaf tissues of Moricandia and rapeseed under both drought and heat stresses. Main pathways and candidate genes were revealed from this analysis, which may be associated with the stress induced change in Moricandia.
Project description:Development and characterization of microsatellite markers for Moricandia moricandioides (Brassicaceae) and cross-amplification in related species
Project description:Nitrogen availability in the soil is a major determinant of crop yield. While the application of fertilizer can substantially increase the yield on poor soils, it also causes nitrate pollution of water resources and high costs for farmers. Increasing the nitrogen use efficiency in crop plants is a necessary step to implement low input agricultural systems. We exploited the genetic diversity present in the world-wide Arabidopsis thaliana population to study adaptive growth patterns and changes in gene expression associated with chronic low nitrate stress, with the aim to identify biomarkers associated with good plant performance under low nitrate availability. Transcription and epigenetic factors were identified as important players in the adaptatiion to limited nitrogen in a global gene expression analysis using the Affymetrix ATH1 chip.